
The Java Series. GUI Building with AWT
Slide 1

GUI Building with AWT

The Java Series

The Java Series. GUI Building with AWT
Slide 2

The java.awt package

• Provides a set of classes to build user
interfaces.
– Window, Button, Textfield, etc..

• To build a UI we just instantiate objects
from those classes:
– We create windows.
– Insert buttons into windows.
– Read/set text from textfields, etc..

The Java Series. GUI Building with AWT
Slide 3

The AWT class hierarchy

The Java Series. GUI Building with AWT
Slide 4

Physical Graphical Elements

• The java interpreter automatically creates the
corresponding physical element when we create objects
from AWT classes.

• Each java interpreter knows how to do it in the platform
it is running.

The Java Series. GUI Building with AWT
Slide 5

Physical Graphical Elements

• When creating a graphical object:
– The Windows interpreter makes Win API calls.
– The Unix interpreter makes Motif calls.
– The MacOS interpreter does MacOS calls.

• But this is done at run-time, depending on
which platform we run the java application:
– The source Java code is always the same.
– The Java bytecodes are always the same.

The Java Series. GUI Building with AWT
Slide 6

Other classes

• AWT Also provides a set of classes to manage
the graphical objects:
– Events, layout mangers, etc..

• The combination of both is what let us build a
UI and decide how it interacts with the user.

The Java Series. GUI Building with AWT
Slide 7

GUI Building

• When making a GUI we have to
implement two aspects:
– The positioning and distribution of a set of

graphical elements.
– The interaction among those elements when

things happen to them.

• These are referred to:
– The LAYOUT definition.
– The EVENTS handling.

The Java Series. GUI Building with AWT
Slide 8

The Goal

• The idea of this presentation is to
explain the main mechanisms to put in
place to build GUIs.

• Detailed information about each
element can be found in the doc.

• We will also see how to search the doc.

The Java Series. GUI Building with AWT
Slide 9

Scenario 1

• We want to create the following window

• In terms of AWT elements there are:
– 1 Window
– 2 Buttons
– 1 Textfield

The Java Series. GUI Building with AWT
Slide 10

Sce 1: MyApplication class
import java.awt.*;

public class MyApplication {

 public static void main (String args[]) {

 Frame f = new Frame("Hello");

 f.setLayout (new FlowLayout());

 Button b1 = new Button("This is button 1");

 Button b2 = new Button("This is button 2");

 TextField t1 = new TextField("Some Text");

 f.add(b1);

 f.add(b2);

 f.add(t1);

 f.pack();

 f.setLocation(100,100);

 f.show();

 }

}

We declare we are going to use AWT

We create a Frame object. The interpreter
creates the physical windows withlocal OS calls

Create a few graphical objects.

Insert them into the frame

Position and show the frame

The Java Series. GUI Building with AWT
Slide 11

Scenario 1

• Note that:
– The last thing we do is to show the frame.
– When the program “finishes” the frame is

not destroyed and works as expected.
– The interpreter runs the interface

concurrently with our program as soon as
f.show() is executed.

The Java Series. GUI Building with AWT
Slide 12

The Component class

• Any Graphical object is a Component.
• It’s the root of the whole hierarchy: Buttons,

Frames, TextAreas, etc..
FROM THE REFERENCE DOCUMENTATION

http://wwwinfo.cern.ch/support/java/docs/api
public abstract class Component
extends Object
implements ImageObserver, MenuContainer, Serializable

A component is an object having a graphical representation that can
be displayed on the screen and that can interact with the user.
Examples of components are the buttons, checkboxes, and scrollbars
of a typical graphical user interface.

The Java Series. GUI Building with AWT
Slide 13

The Component Class

SOME METHODS FROM THE REFERENCE DOCUMENTATION

void paint(Graphics g)
 Paints this component.

protected void processEvent(AWTEvent e)

 Processes events occurring on this component.
void setLocation(int x, int y)

 Moves this component to a new location.
void setSize(int width, int height)

 Resizes this component so that it has width width and height.

The Java Series. GUI Building with AWT
Slide 14

The Container class

• A Container is a Component able to hold other
Components (including other Containers)

The Java Series. GUI Building with AWT
Slide 15

The Container class

• Any container has:
– The list of Components it contains
– A Layout Manager in charge of distributing

the components within.
– Methods to add/remove components.

The Java Series. GUI Building with AWT
Slide 16

The Layout Manager class

• Each Container object uses a LayoutManager
object to calculate the positions and sizes of
its Components.

• Each LayoutManager object can only be used
by one Container.

• Different LayoutManagers use different
algorithms to position the Components.

Container Layout Manager
I want to add Button b1

Here are the position...

The Java Series. GUI Building with AWT
Slide 17

Layout Managers

• There is defined set of LayoutManagers ready
to use out of the box. As components are
added they are possitioned:
– FLowLayout: left to right, top to bottom
– BorderLayout: with respects to the borders of the

container
– GridLayout: Grid based positioning
– GridBagLayout: Complex grid based positioning

The Java Series. GUI Building with AWT
Slide 18

Scenario 2: The GridLayout

import java.awt.*;

public class MyApplication {

 public static void main (String[] args) {
 Frame f = new Frame();
 f.setLayout (new GridLayout(2,2, 20, 20));
 f.setLocation(100,100);

 f.add (new Button("This is button 1"), new Dimension(1,1));
 f.add (new Button("This is button 2"), new Dimension(2,1));
 f.add (new TextField("This is a textfield"), new Dimension(2,2));
 f.pack();
 f.show();
 }
}

We create and associate a LayoutManager
with the Frame we are defining.
It’s a 2x2 grid, with 20 pixels of spacing

Now, when adding Components, we have to
specify where in the Grid they should be placed

The Java Series. GUI Building with AWT
Slide 19

Scenario 3: The Border Layout
import java.awt.*;

public class MyApplication {

 public static void main (String[] args) {

 Frame f = new Frame();

 f.setLayout (new BorderLayout());

 f.setLocation(100,100);

 f.add ("North", new Button("North"));

 f.add ("West", new Button("West"));

 f.add ("South", new Button("South"));

 f.add ("Center", new Button("Center"));

 f.pack();

 f.show();

 }

}

We create and associate a LayoutManager
with the Frame we are defining.
The BorderLayout manager does not require
initial arguments when creating it.

Now, when adding Components, we have to
specify to what part of the available space in the
container they should occupy.

The Java Series. GUI Building with AWT
Slide 20

Containers and Components

• Containers are also regular Components
(derived from the Component class).

• Since a Container contains a set of
Components it can also contain other
Containers.

• Then we have to decide what Layout Manager
we what to use with EACH container.

The Java Series. GUI Building with AWT
Slide 21

Scenario 4

We have a Frame using
the BorderLayout

We have a Panel occupying a position
within the Frame as any other Component.
This Panel uses a GridLayout

The Java Series. GUI Building with AWT
Slide 22

Scenario 4
import java.awt.*;

public class MyApplication {

 public static void main (String[] args) {

 Panel p = new Panel(new GridLayout(2,2));

 p.add (new TextField("1"), new Dimension(1,1));

 p.add (new TextField("2"), new Dimension(1,2));

 p.add (new TextField("3"), new Dimension(2,2));

 Frame f = new Frame();

 f.setLayout (new BorderLayout());

 f.setLocation(100,100);

 f.add ("North", new Button("North"));

 f.add ("West", new Button("Center"));

 f.add ("South", new Button("South"));

 f.add ("Center", p);

 f.pack();

 f.show();

 }

}

We create a Panel, associate a
GridLayout on the fly, and add
some components

We add the Panel (p) in the
Frame as any other component

The Java Series. GUI Building with AWT
Slide 23

Other Components

• There are more components available in AWT:
– Buttons
– TextFields
– Labels: Just plain text.
– Choices: Drop down lists.
– Lists: Lists with selectable items.
– Checkboxes: Clickable radio buttons.
– TextAreas: Multi line text input.
– Canvases: To draw arbitrary shapes & pictures.

• Each component class has its particular way to
create it, give it information, etc..

The Java Series. GUI Building with AWT
Slide 24

Scenario 5: Other Components
import java.awt.*;

public class MyApplication {

 public static void main (String[] args) {

 Choice l = new Choice();
 l.addItem("Item 1");
 l.addItem("Item 2");
 l.addItem("Item 3");

 TextArea ta = new TextArea(5,20);
 TextField tf = new TextField();
 Label lb = new Label("This is an example");

 Frame f = new Frame("Some sample");
 f.setLayout(new GridLayout(2,2));
 f.setLocation(100,100);
 f.add (lb, new Dimension(1,1));
 f.add (l, new Dimension(1,2));
 f.add (tf, new Dimension(2,1));
 f.add (ta, new Dimension(2,2));

 f.pack();
 f.show();
 }
}

A few components. Each component
has its own methods, constructors,
etc.. specific to the function they
perform.

See API documentation for details
on each different component

The Java Series. GUI Building with AWT
Slide 25

Events

• Once the GUI Layout is done we have to
define what to do when the user interacts.

• Events are things happening on the program:
– A mouse move or click.
– A key pressed.
– A focus gained.
– A list item selected.

GUI Programming is EVENT DRIVEN

The Java Series. GUI Building with AWT
Slide 26

Events
An EVENT Happens

The OS decides which application
should handle it (Java interpreter)

The Java Interpreter decides which
object should handle it

The Java Interpreter decides which
Component should handle it.

We have to provide the code for Components to handle the Events we
are interested in

The Java Series. GUI Building with AWT
Slide 27

Events

• To handle Events we write objects and
methods which will be invoked whenever a
certain event happens.

• This is very different from sequential
programming.

• The philosophy is that we set things up to be
ready whenever an event happens.

• The Java interpreter will know what method to
invoke whenever an event happens.

The Java Series. GUI Building with AWT
Slide 28

Types of Events

• There are two types of Events to handle

– Primitive Events: Mouse, Key,…
– Semantic Events: Component-dependant

according to the function of the component:
• List Item Selected
• Text Field changed
• etc...

The Java Series. GUI Building with AWT
Slide 29

Components and Events

• The Java interpreter passes an event to the
relevant component.

• The component contains a list of “Listener”
objects.

• The component notifies each registered
listener object by invoking an specific method
in each of them.

• Each component contains a list of registered
“Listeners” for each type of event.

The Java Series. GUI Building with AWT
Slide 30

Handling Events

1. Create a class defining the methods to be
invoked upon receiving a certain event.

2. Instantiate an object from that class.
3. Register the object with the component you

want to handle the event.
4. Wait for the event to happen.

The Java Series. GUI Building with AWT
Slide 31

Scenario 6

• We are going to handle a semantic
event:

CLICKING ON A BUTTON

We are going to be handling an Action Event.
See the API doc for the Button AWT class

and for the ActionListener interface.

The Java Series. GUI Building with AWT
Slide 32

Sce 6: ActionListener class

import java.awt.event.*;

public class MyActionListener implements ActionListener {

 public void actionPerformed(ActionEvent e) {
 System.out.println("A button has been pressed");
 }
}

This is our own class. We don’t derive
from anything. Listener classes are not
graphical elements themselves

We just implement the ActionListener interface

Following the definition of the ActionListener interface the actionPerformed
method is invoked whenever an instance of this class is properly registered

The Java Series. GUI Building with AWT
Slide 33

Sce 6: MyApplication
import java.awt.*;

public class MyApplication {

 public static void main (String[] args) {

 Button b = new Button ("Press me");
 MyActionListener alistener = new MyActionListener();
 b.addActionListener(alistener);

 Frame f = new Frame("Some sample");
 f.setLayout(new FlowLayout());
 f.setLocation(100,100);
 f.add (b);

 f.pack();
 f.show();
 }
}

We create the Listener object

We create a regular Button

We register the Listener with
the Button. Now AWT takes
care of invoking its method
whenever the event happens.

The Java Series. GUI Building with AWT
Slide 34

Scenario 7

• Handling another semantic event:

SELECTING ITEMS FROM LISTS

• The mechanism is the same:
– Create the appropriate class
– Instantiate an object
– Register it with the List component we want

• See the API doc for AWT List

The Java Series. GUI Building with AWT
Slide 35

Sce 7: ItemListener

import java.awt.event.*;

public class MyItemListener implements ItemListener {

 public void itemStateChanged(ItemEvent e) {
 System.out.println("An Item has been (de)selected");
 }
}

Our own class implementing an Interface

The method required by the interface

The Java Series. GUI Building with AWT
Slide 36

Sce 7: MyApplication
import java.awt.*;

public class MyApplication {

 public static void main (String[] args) {

 List l = new List();
 l.addItem("Select here");
 l.addItem("...or here");
 l.addItem("...or even here");
 MyItemListener alistener = new MyItemListener();
 l.addItemListener(alistener);

 Frame f = new Frame("Some sample");
 f.setLayout(new FlowLayout());
 f.setLocation(100,100);
 f.add (l);

 f.pack();
 f.show();
 }
}

The Listener object

The List component

The registration

The Java Series. GUI Building with AWT
Slide 37

Scenario 8

• Retrieving information from an Event.

• Whenever a Listener method is invoked,
an Event object is passed as parameter.

• The Even object contains information
concerning the specific event:
– The X,Y of mouse if a mouse event.
– The item selected if an item event.
– Etc… (see API doc)

The Java Series. GUI Building with AWT
Slide 38

Sce 8: ItemListener
import java.awt.event.*;
import java.awt.*;

public class MyItemListener implements ItemListener {

 public void itemStateChanged(ItemEvent e) {
 Integer item = (Integer)(e.getItem());
 System.out.println("Item "+item.intValue()+
 " has been (de)selected");

 System.out.println();

 List l = (List)(e.getItemSelectable());
 System.out.println ("Selected Item has text "+
 l.getItem(item.intValue()));
 }
}

The Event

We can retrieve the
index of the selected
item

Or the list component
generating the event

Once we have the list, we can
retrieve the text of the items

The Java Series. GUI Building with AWT
Slide 39

Scenario 9

• We are going to add listeners for other
types of events to Scenario 6.

• Now we want to handle Primitive events
on the button:
– Mouse Enter.

– See the API doc for AWT Button and then
Component

The Java Series. GUI Building with AWT
Slide 40

Sce 9: MouseListener

import java.awt.event.*;

public class MyMouseListener implements MouseListener {

 public void mouseClicked(MouseEvent e) {}
 public void mouseEntered(MouseEvent e) {
 System.out.println("Mouse has entered this object");
 }
 public void mousePressed(MouseEvent e) {}
 public void mouseReleased(MouseEvent e) {}
 public void mouseExited(MouseEvent e) {}

}

We implement this interface

As required by the interface we HAVE to
implement all these methods even though we
are only interested in one

The Java Series. GUI Building with AWT
Slide 41

Sce 9: MyApplication
import java.awt.*;

public class MyApplication {

 public static void main (String[] args) {

 Button b = new Button ("Press me");
 MyActionListener alistener = new MyActionListener();
 MyMouseListener mlistener = new MyMouseListener();
 b.addActionListener(alistener);
 b.addMouseListener(mlistener);

 Frame f = new Frame("Some sample");
 f.setLayout(new FlowLayout());
 f.setLocation(100,100);
 f.add (b);

 f.pack();
 f.show();
 }
}

We create an register two
Listeners for each set of
events we want to handle

The Java Series. GUI Building with AWT
Slide 42

Scenario 10

• It would be desirable to define only the
methods we are interested in.

• AWT contains adapters which provide empty
implementations for event handler.

• Our Listeners can be derived from them
redefining only the methods we are interested
in.

THIS IS OBJECT ORIENTATION !!!

The Java Series. GUI Building with AWT
Slide 43

Sce10: MouseListener

import java.awt.event.*;

public class MyMouseListener extends MouseAdapter {

 public void mouseEntered(MouseEvent e) {
 System.out.println("Mouse has entered this object");
 }
}

We extend the MouseAdapter AWT class
which already provides empty
implementations for a MouseListener

The rest of the code (MyApplication) remains unchanged

The Java Series. GUI Building with AWT
Slide 44

Scenario 11

• This is OO!! We can extend the AWT class
hierarchy redefining methods as desired.

• For instance: We want to create an OKButton
class which always has the “OK” text in it, and
we can optionally pass the action listener
directly when we create OKButtons.

The Java Series. GUI Building with AWT
Slide 45

Sce11: OKButton
import java.awt.*;
import java.awt.event.*;

public class OKButton extends Button {

 // A constructor which automatically provides the text
 public OKButton() {
 super("OK");
 }

 // A constructor to register the action listener
 // at instantiation time
 public OKButton(ActionListener al) {
 this();
 addActionListener(al);
 }
}

We inherit from the AWT Button class

And define two constructors

This constructor expects an ActionListener
and registers it right away

The Java Series. GUI Building with AWT
Slide 46

Sce 11: MyApplication
import java.awt.*;

public class MyApplication {

 public static void main (String[] args) {

 OKButton b1 = new OKButton ();
 OKButton b2 = new OKButton(new MyActionListener());

 Frame f = new Frame("Some sample");
 f.setLayout(new FlowLayout());
 f.setLocation(100,100);
 f.add (b1);
 f.add (b2);

 f.pack();
 f.show();
 }
}

We create two OKButtons

When creating the second OK Button we also:
 - Create an ActionListener
 - The constructor takes care of registering it

The Java Series. GUI Building with AWT
Slide 47

Conclusions

• We use an already made hierarchy of classes defined in
the java.awt.* packages.

• GUI Building is a two fold task:
– Components Layout + Event handling.

• There are a few kinds of objects we have to combine:

– Graphical Components
– Containers + Layout Managers
– Listeners + Events

• And remember this is OO. You can create your own
graphical classes, redefine the ones provided by AWT,
etc…

The Java Series. GUI Building with AWT
Slide 48

Java at CERN
JDK is available through ASIS and NICE
Not all platforms have the same versions available.
To see the versions of your platform: java -listversions
To work with an specific version: setenv JDKVERSION 1.2

wwwinfo.cern.ch/support/java

JAVA SUPPORT at CERN
 Any question about java should be posted to the

cern.java newsgroup, jdk maintainers and other
java users exchange problems and ideas there.
There is an associated mailing list for passive
reading (cern-java@listbox.cern.ch)

