
The Java Series. GUI Building with Swing
Raul RAMOS / CERN-IT User Support Slide 1

GUI Building with Swing

The Java Series

The Java Series. GUI Building with Swing
Raul RAMOS / CERN-IT User Support Slide 2

What is JFC?

• The Java Foundation Classes (JFC) are
a comprehensive set of GUI
components and services to simplify
the development and deployment of
commercial-quality desktop
applications.

• It’s an effort to provide a complete
CLASS LIBRARY to build modern GUIs
out-of-the-box.

• With JFC you’ll get most of what you
need when developing any kind of user
interface.

The Java Series. GUI Building with Swing
Raul RAMOS / CERN-IT User Support Slide 3

What’s in JFC

• Swing: A complete set of graphical
components

• Pluggable look & feel.
• Java 2D: To render, manipulate

and transform, complex 2D
images and text.

• Drag & Drop programmability.
• Accessibility.

SWING IS FOR GUI BUILDING

The Java Series. GUI Building with Swing
Raul RAMOS / CERN-IT User Support Slide 4

What about AWT?

• Provides the basic functionality for GUI
building.

• Provides a minimum set of components.
• Complex GUI require complex

applications.
• Components difficult to customize extend.
• JFC extends AWT
• JFC provides more components and more

functionality.
• AWT provides:

– The Event Model.
– The Component/Container

conceptualization.

The Java Series. GUI Building with Swing
Raul RAMOS / CERN-IT User Support Slide 5

AWT & JFC

AWT (JDK 1.1 +)

Model/View arch.

Pluggable Look&Feel

GUI classes

SWING

Java 2D Drag&Drop

Accessibility

The Java Series. GUI Building with Swing
Raul RAMOS / CERN-IT User Support Slide 6

What do you get with
Swing

• AWT leaves the final implementation to
the interpreter/OS. Although
functionally the same, components
look different in different platforms.

• Swing controls look & feel. Your GUI
looks the same everywhere.

• Some AWT components have limited
capabilities and customizability. With
Swing out-of-the-box:
– ToolTips, Keyboard Navigation,

Properties, etc.
• Swing provides more components:

– Tables, Trees, ToolBars, etc.

The Java Series. GUI Building with Swing
Raul RAMOS / CERN-IT User Support Slide 7

This Talk

• We are going to see how to use and
customize Swing components.

• Two ways to use Swing (two parts of
the lecture):
– A high level set of graphical

components ready to use. Easy to
use in your programs.

– An architecture upon which to build
and customize components to any
degree. Very flexible.

• The Event Model is the one from AWT
so we are going to use it in the exact
same way as in AWT.

The Java Series. GUI Building with Swing
Raul RAMOS / CERN-IT User Support Slide 8

Remember AWT (1)

• GUI Building includes two tasks:
– Building the Interface.
– Handling Events.

• The Hierarchy is based on the
Component class.

• There are two types of Components:
– Containers (Windows, Frames,

Panels,…)
– Everything else (Buttons, Lists,…)

• A Container:
– contains a set of other Components.
– has a Layout Manager to place the

Components within.
• A Frame is a Container which is a top

level window.

The Java Series. GUI Building with Swing
Raul RAMOS / CERN-IT User Support Slide 9

import java.awt.*;

public class MyApplication {

 public static void main (String[] args) {

 Choice l = new Choice();
 l.addItem("Item 1");
 l.addItem("Item 2");
 l.addItem("Item 3");

 TextArea ta = new TextArea(5,20);
 TextField tf = new TextField();
 Label lb = new Label("This is an example");

 Frame f = new Frame("Some sample");
 f.setLayout(new GridLayout(2,2));
 f.setLocation(100,100);
 f.add (lb, new Dimension(1,1));
 f.add (l, new Dimension(1,2));
 f.add (tf, new Dimension(2,1));
 f.add (ta, new Dimension(2,2));

 f.pack();
 f.show();
 }
}

A few components. Each
component has its own
methods, constructors, etc..
specific to the function they
perform.

See API documentation for details
on each different component

The Java Series. GUI Building with Swing
Raul RAMOS / CERN-IT User Support Slide 10

Remember AWT (2)

• The Event Model
• GUI Building is Event Driven.
• Listeners are objects which are

notified whenever a certain event
happens.

• Different Listeners can listen to
different events (mouse move, button
clicks, list selection, windows closing,
etc…)

• Each component has a list of Listeners
for each type of events may happen.

• If you want to do something when a
certain event happens:
– Create your listener class/object
– Register it with the component you

are interested in

The Java Series. GUI Building with Swing
Raul RAMOS / CERN-IT User Support Slide 11

import java.awt.event.*;

public class MyActionListener
 implements ActionListener {

 public void actionPerformed(ActionEvent e) {
 System.out.println("A button has been pressed");
 }
}

import java.awt.*;

public class MyApplication {

 public static void main (String[] args) {

 Button b = new Button ("Press me");
 MyActionListener alistener = new MyActionListener();
 b.addActionListener(alistener);

 Frame f = new Frame("Some sample");
 f.setLayout(new FlowLayout());
 f.setLocation(100,100);
 f.add (b);

 f.pack();
 f.show();
 }
}

The Java Series. GUI Building with Swing
Raul RAMOS / CERN-IT User Support Slide 12

PART 1:
Ready-to-use Swing

• Every AWT component is
reimplemented in Swing:
– Just add a “J” to its class name.
– AWT Button is improved in Swing’s

JButton.
– AWT List is improved in Swing’s

JList.
• Swing’s components have more

methods
JButton b1 = new JButton (new

Image(“picture.gif”))
b1.setToolTipText(“Click here to open”);
b1.setMinimunSize(30,10);
…

The Java Series. GUI Building with Swing
Raul RAMOS / CERN-IT User Support Slide 13

The Swing Hierarchy

AWT SWING

Object Object
 Component Component
 Button Container
 Checkbox JComponent
 Choice JBComboBox
 Label JLabel
 List JList
 Scrollbar JProgressBar
 Container JScrollPane
 Panel JSplitPane
 Window JTabbedPane
 Frame JTable

 JTree
 JAbstractButton
 JButton
 JToggleButton
 JTextComponent
 Window
 Frame
 JWindow
 JDialog
 JFrame

(PARTIAL)

The Java Series. GUI Building with Swing
Raul RAMOS / CERN-IT User Support Slide 14

The Main Differences

• JComponent from Container. Every Swing
object is a Container. Flexibility.

• JComponent provides general functionality:
– ToolTips, Keyboard Navigation, …

• Two kinds of JComponent:
– Top-Level Containers (JFrame, JWindow)
– Lightweight Components (the rest,

including JPanel)
• Top-Level Containers:

– The Contain ONE JPanel.
– Can’t add JComponents directly.
– JComponents are added to the JPanel.
– The Layout Manager is associated with

the JPanel

The Java Series. GUI Building with Swing
Raul RAMOS / CERN-IT User Support Slide 15

Using Swing

• If you have jdk 1.2: it comes
with it you don’t have to do
anything.

• Otherwise:
– download swing for jdk 1.1 from:

http://java.sun.com/products/jfc/download.html

– untar the file swing.jar
– point your classpath to it

• Using java at CERN:
jdk -listversions
setenv JDKVERSION 1.2
javac MyApplication.java
java MyApplication.java

The Java Series. GUI Building with Swing
Raul RAMOS / CERN-IT User Support Slide 16

import java.util.*;
import javax.swing.*;
import java.awt.*;

public class MyApplication {

 public static void main (String args[]) {

 // Create the frame
 JFrame frame = new JFrame ("My Application");

 // Create some components
 JButton b1 = new JButton("A Button");
 b1.setToolTipText("This is the left button");

 JButton b2 = new JButton(new ImageIcon("middle.gif"));
 b2.setToolTipText("This is the middle button");

 JLabel label = new JLabel(new ImageIcon("alb.gif"));

 JTextField text = new JTextField(20);

 Vector items = new Vector();
 for (int i=1; i<20; i++) {
 items.addElement("This is item "+i);
 }
 JList list = new JList(items);
 list.setToolTipText("Select one item");
 JScrollPane listPane = new JScrollPane(list);

 //Lay out the content pane.
 JPanel contentPane = new JPanel();
 contentPane.setLayout(new FlowLayout());
 contentPane.setPreferredSize(new Dimension(300, 300));
 contentPane.add(b1);
 contentPane.add(b2);
 contentPane.add(label);
 contentPane.add(text);
 contentPane.add(listPane);
 frame.setContentPane(contentPane);
 frame.pack();
 frame.show();
 }
}

Scenario 1
Create some components

Add to the JPanel

Set a Layout Manager

Create a JPanel

Associate the JPanel to the Frame

The Java Series. GUI Building with Swing
Raul RAMOS / CERN-IT User Support Slide 17

A Common GUI
Technique

• In Scenario 1, if we want to open
another frame identical we have build it
again.

• But remember this is OO!!
• We can create our own class defining the

frame as we want it and then…
• INSTANTIATE AS MANY TIMES AS WE

WANT

• Extend the already defined GUI classes.
• Define constructors, redefine methods.
• Implement more functionality:

– For instance, you don’t need to define
extra listeners objects if the same
frame is defined as a listener.

The Java Series. GUI Building with Swing
Raul RAMOS / CERN-IT User Support Slide 18

Scenario 1.2

public class FirstSample extends JPanel {

 public FirstSample() {
 super();
 // Create some components
 JButton b1 = new JButton("A Button");

 add(label);
 add(text);
 add(listPane);
 }
 public static void main (String args[]) {
 JFrame frame = new JFrame("First Sample");
 frame.setContentPane(new FirstSample());
 frame.pack();
 frame.show();

 JFrame frame2 = new JFrame("Another First Sample");
 frame2.setContentPane(new FirstSample());
 frame2.pack();
 frame2.show();
 }
}

We extend JPanel

Use the constructor to add components

Always call the parent’s constructor

Now we create as many instances as we want

The Java Series. GUI Building with Swing
Raul RAMOS / CERN-IT User Support Slide 19

Interesting JComponents

• JButton, JList, JLabel, JTextXXX,
JComboBox, JRadioButton,
JCheckBox… extend functionality
existing in AWT Components.

• JProgressBar, JSlider, JTable, JToolBar,
JTree … provide new components.

• JInternalFrame, JScrollPane,
JSplitPane, JTabbedPane … provide
new ways to combine components.

• See the doc:

wwwinfo.cern.ch/support/java/docs/api
The Java Tutorial:

 wwwinfo.cern.ch/support/java/docs

The Java Series. GUI Building with Swing
Raul RAMOS / CERN-IT User Support Slide 20

import java.util.*;
import javax.swing.*;
import java.awt.*;
public class ToolBarSample extends JPanel {
 public ToolBarSample () {
 super();
 // Create a toolbar
 JToolBar mybar = new JToolBar();
 mybar.add(new JButton(new ImageIcon("open.gif")));
 mybar.add(new JButton(new ImageIcon("save.gif")));

 JButton cut = new JButton(new ImageIcon("cut.gif"));
 cut.setToolTipText("Cut Selection");
 JButton copy = new JButton(new ImageIcon("copy.gif"));
 copy.setToolTipText("Copy Selection");
 mybar.add(cut);
 mybar.add(copy);

 // Create some components

 add("North", mybar);
 add("South", label);
 add("Center", text);
 }

 public static void main (String args[]) {
 // Create the frame and the content
 JFrame frame = new JFrame ("My Application");
 ToolBarSample tb = new ToolBarSample();

 frame.setContentPane(tb);
 frame.pack();
 frame.show();
 }

}

Scenario 2: JToolBar

Create a JToolBar object

Add buttons to it

And ready to go

Same technique as before

The Java Series. GUI Building with Swing
Raul RAMOS / CERN-IT User Support Slide 21

JScrollPane

• A generic container to put anything
you’d like to be scrollable:
– Images, Data, Text, …

• You can put any component in an
JScrollPane and Swing will take care of
everything.

• The Component inside the JScrollPane
must be Scrollable (interface).

• Most of Swing components are
Scrollable

• See next scenario with and without the
ScrollPane

The Java Series. GUI Building with Swing
Raul RAMOS / CERN-IT User Support Slide 22

import java.util.*;
import javax.swing.*;
import java.awt.*;

public class ScrollSample extends JPanel {

 public ScrollSample() {
 JTextArea text = new JTextArea();
 JScrollPane textPane = new JScrollPane(text);

 //Lay out the pane.
 setLayout(new BorderLayout());
 setPreferredSize(new Dimension(300, 300));
 add("Center", textPane);
 }

 public static void main (String args[]) {

 // Create the frame
 JFrame frame = new JFrame ("My Application");
 ScrollSample scroll = new ScrollSample();
 frame.setContentPane(scroll);
 frame.pack();
 frame.show();
 }
}

Scenario 3: Scrolling

Create the component

Put into a JScrollPane

Instantiate it and insert into
a top level frame

The Java Series. GUI Building with Swing
Raul RAMOS / CERN-IT User Support Slide 23

JTable

• A Table is a grid of cells.
• The JTable class provides the basic

functionality.
• The data in the table is separated from

the JTable object itself.
• To create a table:

– Instantiate a JTable object
– Create a class to hold the data
– Instantiante a data object
– Associate the Table object with the

data object
• The Data class must be derived from

AbstractTableModel
• Then you can use generic and specific

Listeners as in any other component

The Java Series. GUI Building with Swing
Raul RAMOS / CERN-IT User Support Slide 24

Scenario 4: Tables
import java.util.*;
import javax.swing.*;
import javax.swing.table.*;
import java.awt.*;

class MyTableModel extends AbstractTableModel {
 public int getColumnCount() { return 10; }
 public int getRowCount() { return 10;}
 public Object getValueAt(int row, int col)

{ return new Integer(row*col); }
}

public class TableSample extends JPanel {

 public TableSample() {
 super();

 MyTableModel dataModel = new MyTableModel();
 JTable table = new JTable(dataModel);
 table.setPreferredScrollableViewportSize
 (new Dimension(300, 100));
 JScrollPane scrollpane = new JScrollPane(table);

 //Lay out the content pane.
 setLayout(new FlowLayout());
 add(scrollpane);
 }
 public static void main (String args[]) {

 // Create the frame
 JFrame frame = new JFrame ("Table Sample");

 frame.setContentPane(new TableSample());
 frame.pack();
 frame.show();
 }
}

Define the data class

See AbstractTableModel doc

Create a data instance

Association with data can be
done in the constructor

The Java Series. GUI Building with Swing
Raul RAMOS / CERN-IT User Support Slide 25

JTree

• The principles are the same as JTable
• Create your data + Associate with tree.
• A tree is made of nodes.
• Tree data is created through the

DefaultMutableTreeNode class.
• We need to:

– Define one root node.
– Add nodes to each other to build

the tree structure.

The Java Series. GUI Building with Swing
Raul RAMOS / CERN-IT User Support Slide 26

Scenario 5: Trees
public class TreeSample extends JPanel {
 public TreeSample() {
 super();
 // Create the tree structure
 DefaultMutableTreeNode top =

 new DefaultMutableTreeNode("The root of all");
 DefaultMutableTreeNode primo =
 new DefaultMutableTreeNode ("The First Node");
 top.add(primo);
 primo.add(new DefaultMutableTreeNode ("The firs
 primo.add(new DefaultMutableTreeNode ("The second ..

 DefaultMutableTreeNode second =
 new DefaultMutableTreeNode ("The Second Node");
 top.add(second);
 second.add(new DefaultMutableTreeNode ("The first ..
 second.add(new DefaultMutableTreeNode ("The second ..

 DefaultMutableTreeNode category =
 new DefaultMutableTreeNode ("Category");
 second.add(category);
 category.add(new DefaultMutableTreeNode("Bussines"));
 category.add(new DefaultMutableTreeNode ("Science"));

 JTree tree = new JTree(top);
 JScrollPane scrollpane = new JScrollPane(tree);

 //Lay out the content pane.
 setLayout(new BorderLayout());
 setPreferredSize(new Dimension(350,300));
 add("Center", scrollpane);
 }
}

Create the root node

Create the structure by adding
nodes to each other

Now create the Tree object
with root

The Java Series. GUI Building with Swing
Raul RAMOS / CERN-IT User Support Slide 27

JSplitPanel

• To share the same physical space
simultaneously between two containers

• To use it:
– Create the two components
– Create a JSplitPanel
– Insert them into the JSplitPanel

The Java Series. GUI Building with Swing
Raul RAMOS / CERN-IT User Support Slide 28

Scenario 6: Split Panels
import java.util.*;
import javax.swing.*;
import javax.swing.tree.*;
import java.awt.*;

public class SplitSample extends JPanel {

 public SplitSample() {
 super();

 JSplitPane pane =
 new JSplitPane(JSplitPane.HORIZONTAL_SPLIT);

 TreeSample tree = new TreeSample();
 ScrollSample text = new ScrollSample();

 pane.setLeftComponent(tree);
 pane.setRightComponent(text);
 pane.setDividerLocation(150);
 pane.setDividerSize(10);

 //Lay out the content pane.
 setPreferredSize(new Dimension(350, 300));

 setLayout(new GridLayout(1,1));
 add(pane, new Dimension(1,1));

 }
}

..

Create the Split Panel

Create the components to add

Insert them and configure the Split Panel

We are using the
previous examples

This is OO!!!

The Java Series. GUI Building with Swing
Raul RAMOS / CERN-IT User Support Slide 29

JTabPanel

• To share the same physical space
between any number of components

• The principles like the SplitPanel.
• Create objects + add them.

The Java Series. GUI Building with Swing
Raul RAMOS / CERN-IT User Support Slide 30

Scenario 7: Tab Panels
import java.util.*;
import javax.swing.*;
import javax.swing.tree.*;
import java.awt.*;

public class TabbedSample extends JPanel {

 public TabbedSample() {
 super();

 JTabbedPane tpane = new JTabbedPane();

 tpane.addTab("ScrollSample", new ImageIcon("open.gif"),
 new ScrollSample(),

 "The Previous Scroll Sample");
 tpane.addTab("SplitSample", null,
 new SplitSample(), null);
 tpane.addTab("TreeSample", new ImageIcon("save.gif"),
 new TreeSample(), "The Tree Sample");
 tpane.addTab("TableSample", null,
 new TableSample(), "The Table Sample");

 //Add the tabbed pane to this panel.
 setLayout(new GridLayout(1, 1));
 add(tpane);
 }

..
}

Create the TabbedPanel

Create and add other components.
We are using our previous examples.
Can specify infos when adding

The Java Series. GUI Building with Swing
Raul RAMOS / CERN-IT User Support Slide 31

Internal Frame

• A desktop within a window:

The Java Series. GUI Building with Swing
Raul RAMOS / CERN-IT User Support Slide 32

Scenario 8: Desktops
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class InternalFrameSample extends JFrame implements ActionListener{

 JDesktopPane desktop;
 JButton b1, b2, b3, b4, b5;
 int offsetx=50; int offsety=50;
 public InternalFrameSample() {
 super("Internal Frame Demo");

 desktop = new JDesktopPane();

 JToolBar toolbar = new JToolBar();
 b1 = new JButton ("Scroll Sample");
 b2 = new JButton ("Split Sample");
 b3 = new JButton ("Tree Sample");
 b4 = new JButton ("Table Sample");
 b5 = new JButton ("Tabs Sample");

 toolbar.add(b1); b1.addActionListener(this);
 toolbar.add(b2); b2.addActionListener(this);
 toolbar.add(b3); b3.addActionListener(this);
 toolbar.add(b4); b4.addActionListener(this);
 toolbar.add(b5); b5.addActionListener(this);

 //Add the desktop pane to this panel.
 desktop.setLayout(new BorderLayout());
 desktop.add("North", toolbar);
 setContentPane(desktop);
 }

 public void actionPerformed (ActionEvent e) {
 JInternalFrame frame;
 if (e.getSource() == b1) {
 createInternalFrame("Scroll", new ScrollSample());
 } else if (e.getSource() == b2) {
 createInternalFrame("Split", new SplitSample());
 } else if (e.getSource() == b3) {
 createInternalFrame("Tree", new TreeSample());
 } else if (e.getSource() == b4) {
 createInternalFrame("Table", new TableSample());
 } else if (e.getSource() == b5) {
 createInternalFrame("Tab", new TabbedSample());
 }
 }

 public void createInternalFrame(String title, Container what) {
 JInternalFrame fr = new JInternalFrame(title, true, true, true, true)
;
 fr.setContentPane(what);
 fr.setSize(300,300);
 fr.setLocation(offsetx,offsety);
 offsetx = offsetx+20;
 offsety = offsety+20;

 desktop.add(fr);
 try {
 fr.setSelected(true);
 } catch (java.beans.PropertyVetoException e2) {}
 }

 public static void main (String args[]) {
 InternalFrameSample frame = new InternalFrameSample();
 frame.pack();
 frame.show();
 }

Extend JFrame

Create a toolbar with some buttons

InternalFrameSample objects
are also ActionListeners (for
the toolbar buttons in this
case)

Just put a panel in an
InternalFrame and add it
to the desktop

The Java Series. GUI Building with Swing
Raul RAMOS / CERN-IT User Support Slide 33

PART 2:
Customizable Swing

• We are just going to see the
principles behind the Swing
architecture.

• Everything is Swing is ‘open’.
• It is designed in a modular way,

separating the functionalities of
every component.

• When customizing and Swing
component you choose which
part you want to modify and this
does not affect the rest.

• This is OO!!!

The Java Series. GUI Building with Swing
Raul RAMOS / CERN-IT User Support Slide 34

Customizable Swing

• Swing is a huge library.
• Behind every component there is

a set of objects working to
achieve its mission.

• This implies having a big amount
of classes, interfaces, etc…
interrelated.

• See the doc:
 wwwinfo/support/java/docs/api

The Java Series. GUI Building with Swing
Raul RAMOS / CERN-IT User Support Slide 35

AWT Peer Architecture

• For every component AWT provides
two objects:
– A Logical Object: Containing the

high level properties and behaviors
(data + painting…)

– A Peer Object: Containing the low
level interface with the platform.
Final drawing and behavior is
delegated to the platform.

The Java Series. GUI Building with Swing
Raul RAMOS / CERN-IT User Support Slide 36

Swing Architecture

• The implementation of every
component is separated into:
– The Model of the component:

containing the data, status...
– The View of the component:

containing the graphics and event
handling.

• This way we separate the data from
the UI.

• For every component 4 objects:
– 2 implementing the model
– 2 implementing the view

• When we want to change something
we change the relevant object.

• In AWT everything is in one object.

The Java Series. GUI Building with Swing
Raul RAMOS / CERN-IT User Support Slide 37

Swing Architecture

• Model Object: data + status. Notifies ChangeList.
• ChangeListener: what to do when model changes

– Notifies component about changes.
• Component Object: graphical properties.

– Gets data from model. Asks UI to repaint.
• UI Object: Final physical drawing (not the OS)

The Java Series. GUI Building with Swing
Raul RAMOS / CERN-IT User Support Slide 38

Swing Architecture

• Remember the table:
– We created our own TableModel containing

the data.
– We created a component object and

associated to it.
• There are default implementations of these

objects for each component.

• Depending on what we change we customize:
– The model object: Changes the data…
– The changeListener object: Changes when the

UI is updated after a change on the model.
– The Component object: Changes physical

properties (position, size, contained
components ….)

– The UI object: Changes the look and feel.

The Java Series. GUI Building with Swing
Raul RAMOS / CERN-IT User Support Slide 39

Swing Architecture

• See the doc:
– JComponent.getUIClassID()
– JTable (introduction)
– JTable constructors
– JTable.createDefaultDataModel()
– JTable.createDefaultRenderers()
– JTable.getCellRenderer()
– JTable.getCellEditor()
– JTable.getUI()
– swing.plaf.*

• Observe:
– Complete independence of functionalities.
– Complete customizability.
– Complete modularity.

The Java Series. GUI Building with Swing
Raul RAMOS / CERN-IT User Support Slide 40

Pluggable Look and Feel

• There are three sets of UI Objects already
defined:
– Metal Look & Feel
– Motif Look & Feel
– Windows Look & Feel

• These are the UI objects which are part of the
View part of every component.

• Since they are just objects we can:
– Change the UI Objects associated with any

component
– Build our own UI Objects to create our own

Look & Feel.
• The most important:

– With this architecture we have complete
independence.

– We can design our application and THEN
decide on the LF

The Java Series. GUI Building with Swing
Raul RAMOS / CERN-IT User Support Slide 41

Scenario 9: Look & Feel

The Java Series. GUI Building with Swing
Raul RAMOS / CERN-IT User Support Slide 42

Scenario 9: L&F

The Java Series. GUI Building with Swing
Raul RAMOS / CERN-IT User Support Slide 43

Scenario 9: L&F

The Java Series. GUI Building with Swing
Raul RAMOS / CERN-IT User Support Slide 44

Scenario 9

public class InternalFrameDemo extends JFrame {

..

public void actionPerformed (ActionEvent e) {

 } else if (e.getSource() == b6) {
 changeLF(1);
 } else if (e.getSource() == b7) {
 changeLF(2);
 } else if (e.getSource() == b8) {
 changeLF(3);
 }
 }

 public void changeLF(int what) {
 String lf ="";
 if (what==1) { lf = "com.sun.java.swing.plaf.motif.MotifLookAndFeel";}
 else if (what==2) { lf = "javax.swing.plaf.metal.MetalLookAndFeel";}
 else if (what==3) {
 lf = "com.sun.java.swing.plaf.windows.WindowsLookAndFeel";
 }
 try {
 UIManager.setLookAndFeel(lf);
 SwingUtilities.updateComponentTreeUI(this);
 } catch(Exception e) { e.printStackTrace(); }
 }

When clicking a button

Change the look and feel
of this frame

The Java Series. GUI Building with Swing
Raul RAMOS / CERN-IT User Support Slide 45

Summary

• Swing extends AWT
• New components:

– Lightweight components
• JButton, JTree,…

– Containers
• Split, Tabbed, Desktop

• Customizability through
separation:
– Model part (data + status)
– View part (behavior + UI)

The Java Series. GUI Building with Swing
Raul RAMOS / CERN-IT User Support Slide 46

Swing

• Free.
• Is now part of JDK 1.2.
• When established will be homogenous.
• In JDK 1.1.x is a separate library.

• Modularization implies overhead (slow
performance for heavy UIs)

• Recommendation:
– Swing out-of-the-box is enough for

most of the needs.
– Learn model/view of the particular

component you want to customize.

