
The Java Series. Java RMI and CORBA
Raul RAMOS / CERN-IT User Support Slide 1

Introduction to Java RMI
and CORBA

The Java Series

The Java Series. Java RMI and CORBA
Raul RAMOS / CERN-IT User Support Slide 2

What are RMI and CORBA for?
• Usually, in your application, once you instantiate

objects, you can invoke methods on those objects.
• Every object of your application runs concurrently in the

same memory space and machine.

• The generic goal behind RMI and CORBA is to be able to
invoke methods on objects running on other machines.
– An application running on machine A invokes a method on an

object running on machine B.
– The method invoked on the object of B, also runs on B, using

thus the resources of machine B.
– The application on machine A may wait for the method running

to finish and eventually capture its return value

The Java Series. Java RMI and CORBA
Raul RAMOS / CERN-IT User Support Slide 3

What do RMI and CORBA do?
• They provide the logistics and conceptualizations so

that objects can be accessed across the network.
• Pose yourself the problem: What would I have to do

to be able to invoke methods on remote objects?
• There is a bunch of things to take into account:

– Referencing Objects. Objects living within the same machine
are referenced via memory addresses, etc. Across the network
there is a need to be able to reference objects appropriately.

– Publishing Objects. Need a way to make an object available
remotely.

– Network protocols to transport parameters of methods, result
values and error conditions.

– Languages and machines. Objects available remotely may
not know who’s going to be invoking methods on them.

The Java Series. Java RMI and CORBA
Raul RAMOS / CERN-IT User Support Slide 4

The Main Principle
THE PHYSICAL INDEPENDENCE OF AN OBJECT’S
IMPLEMENTATION AND INTERFACE.
WHILE KEEPING THE LOGICAL UNIFORMITY

Interface

Implementation

Location A

Implementation

Interface

Location A / Object User

Location B /
Object Implementor

RMI / CORBA

Other Objects

Other Objects

My Object

Other Objects

The Java Series. Java RMI and CORBA
Raul RAMOS / CERN-IT User Support Slide 5

The Interface

• The interface is the CONTRACT between
– The remote object implementor.
– The remote object user.

• The implementor creates an object and its interface.
She knows the object will be accessed ONLY through
the interface. Then, she will give the user:
– The interface definition.
– A way to locate the object.

• The user now can:
– Use the interface definition to create her application.
– Locate the object and invoke methods following the

interface definition.

The Java Series. Java RMI and CORBA
Raul RAMOS / CERN-IT User Support Slide 6

How does it work?

Object Implementation
(provided by programmer)

Object Skeleton
(provided by CORBA or RMI)

CORBA or RMI Protocol

Network protocols (tcp/ip, etc.)

CORBA or RMI Protocol

Object Stub
(provided by CORBA or RMI)

Application using
remote object

Network protocols (tcp/ip, etc.)

Physical Network

Remote Object User Object ImplementorInterface

The Java Series. Java RMI and CORBA
Raul RAMOS / CERN-IT User Support Slide 7

How does it work?
• The CORBA or RMI libraries provide the object implementor with a local

object through which her implementation is made available. This is the
OBJECT SKELETON.

• The CORBA or RMI libraries provide the object user with a local object
which corresponds to an specific remote object. This is the OBJECT
STUB (Broker).

• Stubs and skeletons are like representatives or brokers.
• Methods are invoked in the object stub as in any other local object.

The object stub knows where the remote object lives, contacts the its
skeleton object and transfers the parameters of the method invocation.

• The skeleton in the one who actually invokes the requested method in
the object implementation passing on the parameters received from
the stub, retrieving the return value or exceptions and transmits them
back to the stub.

• The stub receives return value or exceptions and gives them to the
application.

The Java Series. Java RMI and CORBA
Raul RAMOS / CERN-IT User Support Slide 8

How does it work?

• All network communication is handled by the stubs and skeletons.
• They talk using a common network protocol.
• CORBA’s protocol over the Internet is called IIOP: Internet

Inter ORB Protocol.

• The user of a remote object doesn’t have to worry about
communications, etc. Just invokes methods on the stub as on any
other local object. The stub does the work.

• The implementor of a remote object just sets the code to be
invoked by the skeleton mechanism. Dirty work is done by the
skeleton.

The Java Series. Java RMI and CORBA
Raul RAMOS / CERN-IT User Support Slide 9

RMI

• Remote Method Invocation. Developed by Sun. With
RMI:
– The remote object implementation must be made in Java.
– The user application must be made in Java.
– The interface definition is just a regular Java interface.

– Due to Java portability, there is no assumption on the
platform on which an object implementation and the user
application are running.

– It’s designed to be a way to develop easily Java distributed
applications.

• It’s simple and straightforward because everything is
kept within Java.

The Java Series. Java RMI and CORBA
Raul RAMOS / CERN-IT User Support Slide 10

CORBA
• Common Object Request Broker Architecture, developed by the

OMG (Object Management Group) a consortium of companies
and organizations. With CORBA:
– The is no assumption on the languages. The implementor and user

decide independently what platform and language thy are
going to use, without needing to know what the other uses.

– Since the interface is the contract it must be language neutral.
– So, OMG created IDL (Interface Definition Language), which is

used to specify language independent interfaces (contracts).
– Implementors and users only share IDL definitions. From an IDL

definition they generate code in the language of their choice.

• CORBA also provides other functionalities (CORBA Services):
– Naming, Transaction, Security, Concurrency, Licensing, Dynamic

Resource Discovery, Events, Life Cycle, etc.

The Java Series. Java RMI and CORBA
Raul RAMOS / CERN-IT User Support Slide 11

RMI vs CORBA

• RMI provides a lightweight, Java-specific mechanism
for objects to interact across the network AND the
tools to make it work. The tools, classes, etc. are
included within jdk.

• CORBA is a specification and an architecture for the
integration of networked objects. Different vendors
follow the CORBA specification to provide tools,
libraries, etc. for multiple languages and platforms.

• The CORBA specification ensures interoperability.
• Sun provides a CORBA implementation for Java

within the JDK
• CORBA and RMI are not compatible.

The Java Series. Java RMI and CORBA
Raul RAMOS / CERN-IT User Support Slide 12

CORBA Architecture

Object Adapter
DII Stubs

IDL
Interf
ORB

Interf
ORB

ORB core

IIOP
socket
TCP/IP

DSI Skel
IDL

ORB core

IIOP
socket
TCP/IP

Object ImplementationOO Application

IR
IR

Location A Location B

NETWORK

IDL Interface

The Java Series. Java RMI and CORBA
Raul RAMOS / CERN-IT User Support Slide 13

The RMI Process
Interface (.java)

Generate Stubs and Skeletons

Create Object Implementation

Start RMI registry

Create Instance of the Object
Implementation (Server App).

Create Client Application:
 - Obtain object reference
 - Invoke methods.

Make them available in the
RMI Registry

Obtain Object Stub

Obtain location of
available instance

Remote Object UserObject Implementor

The Java Series. Java RMI and CORBA
Raul RAMOS / CERN-IT User Support Slide 14

Scenario 1: The Interface

import java.rmi.Remote;
import java.rmi.RemoteException;

public interface Compute extends Remote {
 int executeCalculation (int i) throws RemoteException;
 String tellmeWhoYouAre (String name) throws RemoteException;
}

Extend the Remote interface

Declare methods available on
remote objects implementing this

interface.
Note the exceptions

The Java Series. Java RMI and CORBA
Raul RAMOS / CERN-IT User Support Slide 15

Scenario 1: Object Implementation
import java.rmi.*;
import java.rmi.server.*;

public class ComputeEngine extends UnicastRemoteObject implements Compute
{
 private String id;
 private int count=0;
 public ComputeEngine(String _id) {
 super();
 id = _id;
 }
 public int executeCalculation(int i) {
 System.out.println("Calculation performed with: "+i);

count=count+i;
 return count;
 }

 public String tellmeWhoYouAre(String name) {
 String s = new String("Hello, "+name+" I'm Calculator "+id);
 System.out.println("Greeting "+name);
 return s;
 }
}

Implements the common interface

Implements the methods required
by the interface

Extends some RMI remote object

The Java Series. Java RMI and CORBA
Raul RAMOS / CERN-IT User Support Slide 16

Scenario 1: Setting this up
Compile the interface

javac Compute.java

Compile the implementation

javac ComputeEngine.java

Generate stubs & skeletons

rmic ComputeEngine

Start up RMI registry

rmiregistry&

The Java Series. Java RMI and CORBA
Raul RAMOS / CERN-IT User Support Slide 17

Scenario 1: Registering Instances
import java.rmi.*;
import java.rmi.server.*;

public class Server
{

 public static void main(String[] args) {
 if (System.getSecurityManager() == null) {
 System.setSecurityManager(new RMISecurityManager());
 }

try {
 Compute engine1 = new ComputeEngine("32");
 Naming.rebind("Compute32", engine1);
 Compute engine2 = new ComputeEngine("33");
 Naming.rebind("Compute33", engine2);
 System.out.println("ComputeEngine bound");
 } catch (Exception e) {

 System.err.println("ComputeEngine exception: " + e.getMessage());
 e.printStackTrace();
 }
 }
}

Security Manager required by RMI

Create two instances, name
and register them.

Now there are two objects implementing the Compute interface
available through RMI on this machine. They are named “Compute32”

and “Compute33”. Just start the server app: java Server

The Java Series. Java RMI and CORBA
Raul RAMOS / CERN-IT User Support Slide 18

Scenario 1: the Client
import java.rmi.*;

public class Client {

 public static void main (String args[]) {
 if (System.getSecurityManager()==null) {
 System.setSecurityManager(new RMISecurityManager());
 }
 try {

 String name = “//” + args[0] + “/” +args[1]
 Compute comp = (Compute) Naming.lookup(name);

 int i=comp.executeCalculation(1);
 System.out.println("Calculation result is "+i);
 String s = comp.tellmeWhoYouAre("the Client");
 System.out.println("Greeiting is "+s);
 } catch (Exception e) {
 System.err.println("Exception in RMI: "+e.getMessage());
 e.printStackTrace();
 }
 }
}

Use RMI classes to obtain a reference

Invoke methods on obtained reference.
Local stub and remote skeleton do the

dirty work for you.

The Java Series. Java RMI and CORBA
Raul RAMOS / CERN-IT User Support Slide 19

The CORBA process

Generate stubs and skeletons.
idl2java

Interface (.idl)
Remote Object UserObject Implementor

Generate stubs and skeletons.
idl2java

Create Client Application:
 - Obtain object reference
 - Invoke methods.

Obtain location of
available instance

Create object implementation

Create Instance of the Object
Implementation (Server App).

Register it with the ORB

We are using SUN’s CORBA implementation.
Other vendor’s implementations may vary in

the way this to register objects, etc.

The Java Series. Java RMI and CORBA
Raul RAMOS / CERN-IT User Support Slide 20

Scenario 2

• We are going to implement the same as in scenario 1
but using CORBA.

• We start off from the IDL interface and decide to
make both the implementation and the client in Java.

• But remember, both decisions are independent, we
are just showing how this is done IN THE CASE
where everything is in Java.

• Our Java implementation object could be accessed
from any language understanding CORBA.

• Our Java client will be able to access any Compute
object accessible through CORBA, no matter what
language it is implemented on.

The Java Series. Java RMI and CORBA
Raul RAMOS / CERN-IT User Support Slide 21

Scenario 2: IDL Interface
module Calculations {

 interface Compute
 {
 long executeCalculation (in long i);
 string tellmeWhoYouAre(in string name);
 };
};

This is IDL syntax. There is a complete specification
of the syntax and how it maps to each language.

Compile IDL interface into Java
idl2java Calculations.idl

package Calculations;
public interface Compute
 extends org.omg.CORBA.Object {
 int executeCalculation(int i);
 String tellmeWhoYouAre(String name)
;
}

This generates some java classes.
Look at them:
 - The equivalent Java interface (see
 types conversion)
 - The stubs and skeletons.
 - The Helper & Holder classes for
 further functionality

The Java Series. Java RMI and CORBA
Raul RAMOS / CERN-IT User Support Slide 22

Scenario 2: Object Implementation
import Calculations.*;

import org.omg.CORBA.*;

public class ComputeImpl extends _ComputeImplBase {

 private int count = 0;

 public int executeCalculation(int i) {
 System.out.println("Executing calculation with "+i);
 count=count+i;
 return count;
 }

 public String tellmeWhoYouAre(String name) {
 System.out.println("Greeting "+name);
 return "Hello "+name+", I'm the server";
 }

}

Extend the _ComputeImplBase class
generated by idl2java.

Implement methods as required
by the interface definition.

The Java Series. Java RMI and CORBA
Raul RAMOS / CERN-IT User Support Slide 23

Scenario 2: Registering Instances
import Calculations.*;
import org.omg.CORBA.*;

public class Server {
 public static void main(String args[]) {
 try{
 // Create and initialize the ORB
 ORB orb = ORB.init(args, null);

 // Create an instance and register it with the ORB
 ComputeImpl computeRef = new ComputeImpl();
 orb.connect(computeRef);

 System.out.println("Object IOR is: "+ orb.object_to_string(computeRef));
 // Wait for invocations from clients
 java.lang.Object sync = new java.lang.Object();
 synchronized(sync){
 sync.wait();
 }
 } catch(Exception e) {
 System.err.println("ERROR: " + e);
 e.printStackTrace(System.out);
 }
 }

Create ORB object (see CORBA architecture)

Create and register object instance

Obtain an stringified reference (IOR)

Wait for connections

The Java Series. Java RMI and CORBA
Raul RAMOS / CERN-IT User Support Slide 24

Scenario 2: Setting things up
Compile all the idl2java generated classes

javac Calculations/*.java

Compile the implementation

javac ComputeImpl.java

Compile the server

javac Server.java

Start up the server

java Server

The Java Series. Java RMI and CORBA
Raul RAMOS / CERN-IT User Support Slide 25

Scenario 2: the Client
import Calculations.*;
import org.omg.CORBA.*;

public class Client {

 public static void main (String args[]) {
 try{

 // Create and initialize the ORB
 ORB orb = ORB.init(args, null);

 Compute computeRef = ComputeHelper.narrow(orb.string_to_object(args[0]));

 // Call the Hello server object and print the results
 System.out.println("Calculation with 1: "+computeRef.executeCalculation(1));
 System.out.println("Greeting response : "+computeRef.tellmeWhoYouAre("Me"));

 } catch(Exception e) {
 System.out.println("HelloApplet exception: " + e);
 e.printStackTrace(System.out);
 }
 }
}

Create ORB object (see CORBA architecture)

Obtain object from IOR passed as argument

Cast object to desired class

Use object reference as if it was local

The Java Series. Java RMI and CORBA
Raul RAMOS / CERN-IT User Support Slide 26

Some Issues

• Implementations, Clients and Servers follow the
same principles in CORBA and RMI.

• RMI Client needs the stub of the implementation.
• RMI Server is lighter (rmiregistry takes care of the

communications).
• Casting in CORBA is done via Helper classes.

• We HAVE TO INHERIT the implementation from
some other class: this may not be desirable in all
situations. Solution: the delegation model.

The Java Series. Java RMI and CORBA
Raul RAMOS / CERN-IT User Support Slide 27

The Delegation Model

• In a Delegation Model implementations just
“implement” interfaces but are not required to inherit
from any specific class.

• Implementations of many interfaces can truly be
structured as desired with no restrictions (legacy
software, etc.)

• Need a couple more of steps or classes to make
things work.

The Java Series. Java RMI and CORBA
Raul RAMOS / CERN-IT User Support Slide 28

Scenario 3: Delegation Based RMI
Implementation

import java.rmi.*;
import java.rmi.server.*;

public class ComputeEngine implements Compute
{
 private String id;
 private int count=0;
 public ComputeEngine(String _id) throws RemoteException {
 super();
 id = _id;

UnicastRemoteObject.exportObject(this)
 }
 public int executeCalculation(int i) {
 System.out.println("Calculation performed with: "+i);

count=count+i;
 return count;
 }

 public String tellmeWhoYouAre(String name) {
 String s = new String("Hello, "+name+" I'm Calculator "+id);
 System.out.println("Greeting "+name);
 return s;
 }
}

Implements the common interface

MUST Make the object RMI aware

No inheritance required. We inherit as we want

The Java Series. Java RMI and CORBA
Raul RAMOS / CERN-IT User Support Slide 29

Scenario 4: CORBA delegation
Tell idl2java to generate delegation logistics

idl2java -ftie Calculations.idl

This generates more classes

ls Calculations

 Calculations/Compute.java
Calculations/_ComputeImplBase.java
Calculations/_ComputeTie.java

 Calculations/ComputeHelper.java
Calculations/_ComputeOperations.java

 Calculations/ComputeHolder.java
Calculations/_ComputeStub.java

The Java Series. Java RMI and CORBA
Raul RAMOS / CERN-IT User Support Slide 30

Scenario 4: Delegation Based
CORBA Implementation

import Calculations.*;
// All CORBA applications need these classes.
import org.omg.CORBA.*;

public class ComputeImpl implements _ComputeOperations {

 public int executeCalculation(int i) {
 System.out.println("Executing calculation with "+i);
 return i+1;
 }

 public String tellmeWhoYouAre(String name) {
 System.out.println("Greeting "+name);
 return "Hello "+name+", I'm the server";
 }

}

Implements the common interface
via a third class

No inheritance required

The Java Series. Java RMI and CORBA
Raul RAMOS / CERN-IT User Support Slide 31

Scenario 4: Server Application
import Calculations.*;
// All CORBA applications need these classes.
import org.omg.CORBA.*;

public class Server {
 public static void main(String args[]) {
 try{

 // Create and initialize the ORB
 ORB orb = ORB.init(args, null);

 // Create the servant and register it with the ORB
 ComputeImpl compute = new ComputeImpl();
 Compute computeRef = new _ComputeTie(compute);
 orb.connect(computeRef);
 System.out.println("Object IOR is: "+ orb.object_to_string(computeRef));

 // Wait for invocations from clients
 java.lang.Object sync = new java.lang.Object();
 synchronized(sync){
 sync.wait();
 }
 . . .

Create an instance of the
implementation

Create Tie object from instance

We actually make available the tie object,
not the implementation instance itself.

TIE Object takes care of invoking our implementation

The Java Series. Java RMI and CORBA
Raul RAMOS / CERN-IT User Support Slide 32

Scenario 5: Interface Inheritance

module Calculations {

 interface Compute
 {
 long executeCalculation (in long i);
 string tellmeWhoYouAre(in string name);
 };

 interface GreatCompute : Compute {
 long executeGreatCalculation (in long i);
 };
}; This is the inheritance

operator in CORBA

The Java Series. Java RMI and CORBA
Raul RAMOS / CERN-IT User Support Slide 33

Scenario 5
• Scenario in CORBA but in RMI is exactly the same game
• Decisions on the implementation are independent from

decisions on the interface.
• In the implementation we can decide:

– ComputeImpl implements Compute: executeCalculation,
tellmeWhoYouAre

– GreatComputeImpl implements GreatCompute and inherits from
ComputeImpl: executeGreatCalculation.

• Or:
– ComputeImpl implements Compute: executeCalculation,

tellmeWhoYouAre

– GreatComputeImpl implements GreatCompute without inheriting
from ComputeImple: executeCalculation, tellmeWhoYouAre,
executeGreatCalculation

The Java Series. Java RMI and CORBA
Raul RAMOS / CERN-IT User Support Slide 34

Scenario 5: Inheritance Implemenation

import Calculations.*;
import org.omg.CORBA.*;

public class GreatComputeImpl
 extends ComputeImpl
 implements _GreatComputeOperations {

 public int executeGreatCalculation(int i) {
 System.out.println("Executing calculation with "+i);
 return i*2;
 }

}

We decide in the implementation to inherit
from ComputeImpl. Here we are using

DELEGATION

But we always implement an interface

… and its methods

The Java Series. Java RMI and CORBA
Raul RAMOS / CERN-IT User Support Slide 35

Scenario 5: Instantiation
 // Create and initialize the ORB
 ORB orb = ORB.init(args, null);

 // Create the servant and register it with the ORB
 ComputeImpl compute = new ComputeImpl();
 Compute computeRef = new _ComputeTie(compute);
 orb.connect(computeRef);
 System.out.println("Compute Instance is: "+ orb.object_to_string(computeRef));

 // Create the servant and register it with the ORB
 GreatComputeImpl greatcompute = new GreatComputeImpl();
 GreatCompute greatcomputeRef = new _GreatComputeTie(greatcompute);
 orb.connect(greatcomputeRef);
 System.out.println("GreatCompute Instance is: ”
 + orb.object_to_string(greatcomputeRef));

 // Wait for invocations from clients
 java.lang.Object sync = new java.lang.Object();
 synchronized(sync){
 sync.wait();
 } Create one instance of GreatComputeImpl

and make it available through a tie object

Create one instance of ComputeImpl and
make it available through a tie object

The Java Series. Java RMI and CORBA
Raul RAMOS / CERN-IT User Support Slide 36

Scenario 5: A Compute Client
import Calculations.*;
import org.omg.CORBA.*;

public class InvokeCompute
{
 public static void main (String args[])
 {
 try{

 // Create and initialize the ORB
 ORB orb = ORB.init(args, null);
 Compute computeRef = ComputeHelper.narrow(orb.string_to_object(args[0]));

 // Call the Hello server object and print the results
 System.out.println("Calculation with 1: "+computeRef.executeCalculation(1));
 System.out.println("Greeting response : "+computeRef.tellmeWhoYouAre("Me"));

 } catch(Exception e) {
 System.out.println(”Exception: " + e);
 e.printStackTrace(System.out);
 }
 }
}

This client invokes methods on any remote
Compute object, by giving its IOR as arg

The Java Series. Java RMI and CORBA
Raul RAMOS / CERN-IT User Support Slide 37

Scenario 5: A GreatCompute Client
import Calculations.*;
import org.omg.CORBA.*;
public class InvokeGreatCompute
{
 public static void main (String args[])
 {
 try{

 // Create and initialize the ORB
 ORB orb = ORB.init(args, null);
 GreatCompute ref = GreatComputeHelper.narrow(orb.string_to_object(args[0]));

 // Call the Hello server object and print the results
 System.out.println("Calculation with 1: "+ref.executeCalculation(1));
 System.out.println("Greeting response : "+ref.tellmeWhoYouAre("Me"));
 System.out.println("Great Calculation with 8: "+
 ref.executeGreatCalculation(8));

 } catch(Exception e) {
 System.out.println(”Exception: " + e);
 e.printStackTrace(System.out);
 }
 }
}

This client invokes methods on any remote
GreatCompute object, by giving its IOR as arg

The Java Series. Java RMI and CORBA
Raul RAMOS / CERN-IT User Support Slide 38

Scenario 5: This is OO!!
Start the server

[rsplus13]> java Server

Compute instance is: IOR:A

GreatCompute instance is: IOR:B

On the client:

[solaris]> java InvokeCompute IOR:A

Calculation with 1: 1

Greeting response : Hello Me, I'm the server

[solaris]> java InvokeGreatCompute IOR:B

Calculation with 1: 1

Greeting response : Hello Me, I'm the server

Great Calculation with 8: 16

[solaris]>java InvokeCompute IOR:B

Calculation with 1: 2

Greeting response : Hello Me, I'm the server

[solaris]> java InvokeGreatCompute IOR:A

 *** ERROR ***

This is fine, invoking methods in objects

This is OO, any GreatCompute is also a Compute, by
virtue of the interface (not of the implementation)

But a Compute is not a GreatCompute, so we get an error

The Java Series. Java RMI and CORBA
Raul RAMOS / CERN-IT User Support Slide 39

Distributed Objects

• We are doing distributed objects: clients actually
don’t have know where objects are.

• Through RMI and CORBA we can design the
distribution of objects through the network
independently from the clients using them.

• Applications are made by assembling objects across
the network.

• Applications’ usage of resources is designed by the
distribution of objects across machines.

The Java Series. Java RMI and CORBA
Raul RAMOS / CERN-IT User Support Slide 40

Middleware

• CORBA and RMI can also be used as middleware.
• Whenever you have proprietary sw or hw to be

accessed on a machine create an object on that
machine with methods to access the sw or hw, and
then make it available through CORBA or RMI.

• For instance:
– Want to control remotely a lamp connected to a computer?
– Create an interface with two methods: on(), off()
– Create an object in the computer the lamp is connected to

so that it implements the previous interface.
– Make it available through RMI and CORBA.
– Clients can invoke remotely the on() or off() methods.

The Java Series. Java RMI and CORBA
Raul RAMOS / CERN-IT User Support Slide 41

Summary
• RMI and CORBA originate in the same base idea (accessing remote

objects).
• RMI is a lightweight JAVA specific method:

– Interfaces are created straightaway.
– Mechanisms to transfer code between client and server.
– Simple naming and security mechanisms for remote instances.

• CORBA is a complex language independent architecture:
– Interfaces are specified in IDL.
– There is a collection of services to deploy complex applications:

• Hierarchical naming service for objects (a la DNS) to avoid IORs
• Dynamical Stubs and Skeletons to make generic clients or servers.
• Transactions involving multiple objects (like in DBs).
• Security and authentication to control objects access.
• Life Cycle for controlling lifetime of objects across the network.
• etc.

The Java Series. Java RMI and CORBA
Raul RAMOS / CERN-IT User Support Slide 42

Summary

• RMI and CORBA objects are not compatible (IIOP and RMI
protocol are not compatible).

• Sun and IBM have enabled RMI over CORBA.
• An RMI remote object can be accessed as a CORBA object and

CORBA objects could be accessed from RMI.

• Use RMI if you know you are going to be using only Java (I.e.
java Applets and servers) and your application is simple enough.
Don’t complicate your life unnecessarily.

• Use CORBA for general solutions and applications likely to
grow in complexity.

