LHCf forward physics results

Yoshitaka Itow
STE Lab / Kobayashi-Maskawa Inst.
Nagoya University
and on behalf of the LHCf collaboration

“LHC-CR 2013”
Feb 11-12, 2013, CERN
The LHCf collaboration

Solar-Terrestrial Environment Laboratory, Nagoya Univ.

H.Menjo
Kobayashi-Maskawa Institute, Nagoya Univ.

K.Yoshida
Shibaura Institute of Technology

K.Kasahara, T.Suzuki, S.Torii
Waseda Univ.

T.Tamura
Kanagawa University

M.Haguenauer
Ecole Polytechnique, France

W.C.Turner
LBNL, Berkeley, USA

O.Adriani, L.Bonechi, M.Bongi, R.D’Alessandro, M.Grandi,
P.Papini, S.Ricciarini, G.Castellini
INFN, Univ. di Firenze, Italy

K.Noda, A.Tricomi
INFN, Univ. di Catania, Italy

A-L.Perrot
CERN, Switzerland

~30 physicists from 5 countries
The LHCf detectors

- 16 tungsten + pl.scinti. layers
 - 25mmx25mm + 32mmx32mm
- 4 Silicon strip tracking layers
- 4 SciFi tracking layers

16 tungsten + pl.scinti. layers
- 20mmx20mm + 40mmx40mm
- 4 SciFi tracking layers
What LHCf measures

- Inelastic cross section
 - If large σ
 - rapid development
 - If small σ
 - deep penetrating

- Forward energy spectrum
 - If softer
 - shallow development
 - If harder
 - deep penetrating

- Inelasticity $k = 1 - \frac{p_{lead}}{p_{beam}}$
 - If large k
 - π^0s carry more energy
 - rapid development
 - If small k
 - (baryons carry more energy)
 - deep penetrating

(relevant to N_μ)
Impact of forward spectra on shower development

Half of shower particles comes from large $X_F \gamma$

$X_F = E/E_{tot}$
LHCf p_T acceptance

Projected edge of beam pipe
Y. Itoy, LHCf Forward physics results

LHCf single γ spectra at 7TeV

DPMJET 3.04 QGSJETII-03 SIBYLL 2.1 EPOS 1.99 PYTHIA 8.145

Gray hatch: Sys+stat errors
Magenta hatch: Stat errors of MC

None of the models agree with data
Data within the range of the model spread

PLB 703 (2011) 128-134

$0.68 \pm 0.53 \text{nb}^{-1}$ on 15May2010
LHCf single γ spectra at 900 GeV

May 2010 900 GeV data (0.3 nb$^{-1}$, 21% uncertainty not shown)

DPMJET 3.04 QGSJETII-03 SIBYLL 2.1 EPOS 1.99 PYTHIA 8.145
Comparison of Data/MC ratio at two energies

DPMJET 3.04 QGSJETII-03 SIBYLL 2.1 EPOS 1.99 PYTHIA 8.145
X_F spectra for single γ: 900GeV/7TeV comparison

\[
\frac{1}{\sigma_{\text{inel}} \frac{dX}{dX_F}} \frac{d\sigma_{\gamma}}{dX_F} \bigg\rvert_{\eta<\text{limited}} \propto \frac{1}{\sigma_{\text{inel}} p_T dp_T dX_F} \langle p_T \rangle dp_T
\]

(syst error not included)

- Comparing X_F for common P_T region at two collision energies.
- Less root-s dependence of P_T for X_F?
LHCf 7TeV π^0 analysis

Type-I

$\sigma_M = 3.7\%$

Type-II

Type-I sample

Type-II sample

LHCf-Arm1

Data 2010

Preliminary

LHC-CRS2013 @ 11Feb 2013
LHCf π^0 P_T spectra at 7 TeV

DPMJET 3.04 QGSJETII-03 SIBYLL 2.1 EPOS 1.99 PYTHIA 8.145

PRD 86 (2012) 092001
LHCf π^0 P_T spectra at 7TeV (data/MC)

DPMJET 3.04 QGSJETII-03 SIBYLL 2.1 EPOS 1.99 PYTHIA 8.145

EPOS gives the best agreement both for shape and yield.
7TeV π⁰ analysis

- Photon analysis and π⁰ analysis compensate each missing information.
 - High energy photon originates from large \(P_T \) π⁰ events.
 - Photon spectrum includes a contribution from other hadrons/baryons.

Photon \(P_T \) analysis can connect each measurement.
Average P_T of π^0

![Graph](image)

1. Thermodynamics

\[
\frac{1}{\sigma_{\text{inel}}} E \frac{d^3 \sigma}{dp^3} = A \cdot \exp(-\sqrt{p_T^2 c^2 + m_{\pi^0}^2 c^4 / T})
\]

\[
\langle p_T \rangle = \sqrt{\frac{\pi m_{\pi^0} c^2 T}{2}} \frac{K_2(m_{\pi^0} c^2 / T)}{K_{3/2}(m_{\pi^0} c^2 / T)}
\]

- Comparison w/ UA7@630GeV
- Extend to higher η regions
- Less energy dependence of <PT>?
Current and future activity

- Forward neutron spectra
 - Inelasticity
- Cold nuclear effect
 - LHC p-Pb
- Energy dependence
 - 14TeV at LHC, 0.5TeV pp at RHIC
- Nuclear dependence
 - p-A, A-A at RHIC, and future LHC?
- Feedback to air showers
Nuclear effects for very forward region

- Air showers take place via p-N or Fe-N collisions!
 - Nuclear shadowing, final state interaction, gluon saturations
 - Nuclear modification factor at 0 degree may be large.

\[
R_{dAu}^Y = \frac{\sigma_{pp}^{inel}}{\langle N_{bin}\rangle \sigma_{had}^{dAu}} \cdot \frac{E d^3\sigma/dp^3(d + Au \to Y + X)}{E d^3\sigma/dp^3(p + p \to Y + X)}
\]

\[\sqrt{s_{NN}} = 200 \text{ GeV}\]

\[\eta^0(\eta > 4.00)\]
\[h^-(\eta = 3.2)\]
\[h^-(\eta = 2.2)\]

\[\eta < 8.99\]
\[\eta > 10.94\]

\[\text{Courtesy of S. Ostapchenko}\]
LHCf p – Pb runs at $\sqrt{s_{NN}} = 4$ TeV (Jan 2013)

- 2013 Jan / a month of p-Pb opportunity.
 - Install only Arm2 at one side (Si good for multiplicity)
 - Data both at p-side and Pb-side
 - Common pre-scaled trig. w/ ATLAS γ for centrality tagging

![Graph showing number of events over time]

- #Events (Millions)
 - p-remnant side
 - Pb-remnant side
 - Beam reversal

- 20 Jan
- 27 Jan.
- 01 Feb.
LHCf p-Pb runs

Shower incident position at p-side

A high multiplicity event at Pb-side
Future p-N and Fe-N in LHC?

- LHC 7TeV/Z p-N and N-N collisions realize the laboratory energy of 5.2×10^{16}eV and 3.6×10^{17}eV, respectively (N: Nitrogen)

- Suggestions from the CERN ion source experts:
 - LHC can in principle circulate any kind of ions, but switching ion source takes considerable time and manpower
 - Oxygen can be a good candidate because it is used as a ‘support gas’ for Pb ion production. This reduces the switching time and impact to the main physics program at LHC.
 - According to the current LHC schedule, the realization is not earlier than 2020.
 - New ion source for medical facility in discussion will enable even Fe-N collisions in future
Summary

- LHCf provides dedicated measurements of neutral particles at 0 deg to cover most of collision energy flow.
 - E_γ spectra for single gamma at 7TeV and at 900GeV. Agreement is “so-so”, but none of models really agree.
 - p_T spectra for 7TeV π^0. EPOS gives nice agreement.
 - Forward neutron analysis is under going.
 - 2004 LHC p-Pb run successfully (almost) done to study cold nuclear effect at 0 degree.

- Future
 - Revisit “14TeV” at ~2014 with a rad-hard detector.
 - Possible future RHIC run is under discussion.
 - Possible LHC light ion runs is under discussion.
International Workshop on
“High-energy scattering at zero degree"

2nd - 4th March, 2013
KMI, Nagoya University

http://www.gcoe.phys.nagoya-u.ac.jp/hesz2013

Organizing committee
Yoshitaka Itow (Nagoya)
Kazunori Itakura (KEK)
Yuji Goto (Riken)
Takashi Sako (Nagoya)
Kenta Shigaki (Hiroshima)
Kiyoshi Tanida (SNU)
Yuji Yamazaki (Kobe)

- Diffraction and very forward p-p and p-A scatterings
- Forward and ultra peripheral A-A scatterings
- Spin asymmetry at very forward in polarized p-p scatterings
- High energy cosmic ray interaction models
- QCD aspects in very forward scattering
Backup
Calorimeter performance

- Gamma-rays ($E>100\text{GeV}$, $dE/E<5\%$)
- Neutral Hadrons ($E>a$ few 100 GeV, $dE/E\sim30\%$)
- Neutral Pions ($E>700\text{GeV}$, $dE/E<3\%$)
- Shower incident position ($170\mu\text{m} / 40\mu\text{m}$ for Arm1/Arm2)

\[\begin{align*}
\text{Gamma-rays (E>100GeV, dE/E<5\%)} \\
\text{Neutral Hadrons (E>a few 100 GeV, dE/E~30\%)} \\
\text{Neutral Pions (E>700GeV, dE/E<3\%)} \\
\text{Shower incident position (170\mu m / 40\mu m for Arm1/Arm2)}
\end{align*}\]
Very forward: Majority of energy flow ($\sqrt{s}=14$ TeV)

Most of the energy flows into very forward (Particles of $X_F > 0.1$ contribute 50% of shower particles)
LHCf calorimeters

Arm#2 Detector

Arm#1 Detector

290mm

90mm
Setup in IP1-TAN (side view)

BRAN-Sci
ZDC type1
ZDC type2
LHCf Calorimeter
BRAN-IC
LHCf Front Counter
Beam pipe
Distance from center
Neutral particles
IP1

Pseudo-Rapidity

8.7 - 47mm
9.6 - 19mm
0mm

Calorimeter
Event sample \((\pi^0 \rightarrow 2\gamma) \)

Longitudinal development measured by scintillator layers

- 25mm Tower ➔ 600GeV photon
- 32mm Tower ➔ 420GeV photon

Lateral distribution measured by silicon detectors

- Total Energy deposit ➔ Energy Shape ➔ PID
- Hit position, Multi-hit search.

\(M_{\pi^0} = \sqrt{E_{\gamma_1}E_{\gamma_2}} \cdot \theta \)

\(\Box^0 \) mass reconstruction from two photon.

Systematic studies
Parent π^0 pseudorapidity producing ground muons
The single photon energy spectra at 0 degree at 7TeV

(O.Adriani et al., PLB 703 (2011) 128-134)

DATA
- 15 May 2010 17:45-21:23, at Low Luminosity $6 \times 10^{28}\text{cm}^{-2}\text{s}^{-1}$, no beam crossing angle
- 0.68 nb$^{-1}$ for Arm1, 0.53 nb$^{-1}$ for Arm2

MC
- DPMJET3.0 4, QGSJETII03, SYBILL2.1, EPOS1.99
- PYTHIA 8.145 with the default parameters.
- 10^7 inelastic p-p collisions by each model.

Analysis
- Two pseudo-rapidity, $\eta > 10.94$ and $8.81 < \eta < 8.99$.
- No correction for geometrical acceptance.
- Luminosity by FrontCounter (VdM scan)
- Normalized by number of inelastic collisions with assumption as $\sigma_{\text{inela}} = 71.5\text{mb}$. (c.f. $73.5 \pm 0.6^{+1.8}_{-1.3}\text{mb}$ by TOTEM)
New 900 GeV single γ analysis

- 0.3nb$^{-1}$ data (44k Arm1 and 63k Arm2 events) taken at 2,3 and 27 May, 2010
- Low luminosity ($L \sim 10^{28}$ typical, 1 or 4 xing), negligible pile up (0.05 int./xing).
- Relatively less η-dependence in the acceptance. Negligible multi-incidents at a calorimeter ($\sim 0.1\gamma (>50\text{GeV})$/int.)
- Higher gain operation for PMTs. Energy scale calibration by SPS beam, checked with π^0 in 7TeV data.
LHCf type-I \(\pi^0 \) analysis

- Low lumi (L\(\sim \)5e28) on 15-16May, 2.53(1.91) nb\(^{-1}\) at Arm1 (Arm2). About 22K (39K) \(\pi^0 \) for Arm1(Arm2) w/ 5\%BG.
- For \(E_\gamma > 100 \text{GeV} \), PID (\(\gamma \) selection), shower leakage correction, energy rescaling (-8.1\% and -3.8\% for Arm1&2).
- \((E, P_T)\) spectra in +-3\(\sigma \) \(\pi^0 \) mass cut w/ side band subtracted.
- Unfolding spectra by toy \(\pi^0 \) MC to correct acceptance and resolution.
Next target: Inelasticity ~ 0 degree neutrons

- Important for X_{max} and also N_{μ}
- Measurement of inelasticity at LHC energy

Neutral hadrons at 14 TeV
(LHCf acceptance, no resolution)

Neutral hadrons at 14 TeV
(LHCf acceptance, 30% resolution)
“RHICf” : η acceptance for 100GeV/n d-N MC

$\eta > 5.8$ is covered

No acceptance for ϕ^0 at 900GeV
Expct’d E spectra (p-remnant side)

Small tower

- γ-rays, small tower
 - DPMJET III
 - EPOS

- Neutrons, small tower
 - DPMJET III
 - EPOS

Large tower

- γ-rays, big tower
 - DPMJET III
 - EPOS

- Neutrons, big tower
 - DPMJET III
 - EPOS
LHCf future plan

- Analysis ongoing for 2010 data
 - Neutron energy spectra → inelasticity
- Reinstall Arm1+2 for 14TeV in 2014
 - Now upgrading detectors w/ rad-hard GSO.
- A new measurement at RHIC 0 degree
 - Under discussions for 500GeV p+p and d + light-A.
- Far future (>2020?) p-N and N-N collisions at LHC?