The influence of very forward hadron production in air shower development

N. SakuraiA, T. SakoAB, Y. ItowAB, K. KasaharaC

KMI, Nagoya UniversityA
STEL, Nagoya UniversityB
Waseda UniversityC
Contents

1. Introduction
2. Interaction model modification
3. Influence in air shower development
4. Summary
Introduction

Anomalies in AS observation and LHCf results
Introduction: Air shower observations

• From Telescope Array,
\[E(\text{FD}) = E(\text{SD})/1.27 \]

• From PAO,
\[\mu \text{ on the ground is larger than predictions} \]

Shower development is not completely understood.
Difference b/w E(FD) and E(SD)

Longitudinal development

Lateral distribution

Proton \(10^{14} \text{ eV} \)

\(h^{\text{fast}} = 17642 \text{ m} \)

hadrons \(\rightarrow\) muons

neutrons \(\rightarrow\) electrons

Made by A. Oshima (Chubu U.)
Introduction: Very forward hadron production

- Energy flow distribution of pp @ $\sqrt{s} = 7$[TeV]

To understand shower development, pion and nucleon production in very forward region is essential.
Introduction: π^0 result of LHCf experiment

- LHCf group has published π^0 pT spectra at $11 > y > 8.9$ in pp 7TeV collisions.

- EPOS-LHC reproduces data.
- QGSJET-II-04 is also good.
Introduction: π^0 result of LHCf experiment

- Calculate energy flow from published data and compare with prediction of models.

π^0 energy flow is not far from the post-LHC model predictions.
Introduction: neutron result of LHCf experiment

- Compare the LHCf neutron results with post-LHC models and DPMJET3.

In these figures, the distance from collision point and detector is not taken into account. So, decay neutrons are not included.
Introduction: neutron result of LHCf experiment

- Calculate energy flow from published data and compare with prediction of models.

Neutron energy flow is about 30% larger than the post-LHC model predictions.
Modification of QGSJET-II-04
Modification method

• In order to increase energy flow of neutron at very forward region, the interaction in which the leading particle is neutron is increased.
 1. Select Non-diffractive event whose leading particle is not neutron.
 2. 10% of selected events are converted to Single diffractive events or double diffractive events whose leading particles are neutrons.

neutron : +30%
proton : +2%
Charged π : -4%
π^0 : -4%
Result of Modification ($\eta > 10.76$)

Original QGSJET-II-04

Sum = 21.7GeV

Modified

Sum = 28.2GeV
Result of Modification ($9.22 > \eta > 8.99$)

Original QGSJET-II-04

Sum = 31.7GeV

Modified

Sum = 40.5GeV
Result of Modification (8.99 > \eta > 8.81)

Original QGSJET-II-04

Energy (GeV)

\begin{itemize}
\item Sum = 23.6 GeV
\end{itemize}

Modified

Energy (GeV)

\begin{itemize}
\item Sum = 28.9 GeV
\end{itemize}
π0 energy flow at $y<8.0$ is decreased about 10%.
Neutron energy flow increased about 30% at the peak.
Summary of model modification

• Output of QGSJET-II-04 is modified to increase the leading neutron.

• Neutron energy flow in LHCf acceptance is increased.
 • $\eta>10.76$: 30% larger than the measured value.
 • $9.22>\eta>8.99$: Almost same as data
 • $8.99>\eta>8.81$: 25% smaller than the measured value

• Energy distributions become harder, although real data shows softer distribution.

• Energy distribution of neutron from diffractive interaction is too hard.
Air shower simulation

Proton primary, 1EeV, Vertical
Simulation condition

• Cosmos Ver7.645 is used as the air shower simulator.
 • http://cosmos.n.kanagawa-u.ac.jp/cosmosHome/index.html
 • 3D simulation is essential for the lateral distribution.
 • ~4 hours for 10^{18}eV proton shower data production

• Primary particle is 10^{18}eV vertical proton.

• Modification is applied to interactions above 10^{13}eV.
Longitudinal development

Increase of high rapidity particle slows the shower development. Xmax changes +5g/cm^2 by this modification.
Lateral distribution

of Electron

- +2% at core
- -0.5% at 600m away

of Muon

- ~+2% at core
- -1% at 1000m away
Summary of air shower simulation

• Proton primary, 10^{18}eV, Vertical
• X_{max} is changed only $+5g/cm^2$
• Lateral distribution is changed \sim few %.
 • # of particle around shower core is increased.
• This lateral distribution change is the opposite direction to the observation of TA.
 • TA shows the higher particle density than the prediction at 800m away from the core.
• This modification does not solve the muon excess.
Summary & prospects

• TA observation shows the 27% difference between FD/SD energy scale.

• One of the candidate of the source is the lateral distribution of secondary particles.

• To modify the lateral distribution, the LHCf neutron data and COSMOS air shower simulator is used.

• LHCf neutron results shows the higher energy flow than the predictions of post-LHC models.

• QGSJET-II-04 output is modified to increase the leading neutron.
 • Neutron energy flow at peak increases about 30%.
 • Neutron spectra at LHCf acceptance become harder than the observation results.
Summary & prospects

• Increase of the leading neutron does not affect the lateral distribution.
• Lower energy neutron should be increased to fit the data. (Next step)
 → Large multiplicity of neutron will result the increase of muon.
• pp 13TeV data will give us the information of π0 around the peak of energy flow distribution.