Status of the LHCf experiment

- Physics background
- Experiment and current results
- LHC 13 TeV run and future

STE Lab. / Kobayashi-Maskawa Inst., Nagoya University
Yoshitaka Itow
ICRC2015
30th Jul 2015
10^{17} eV: Crossroad of accelerators and UHECRs

- LHC covers $10^{14} - 10^{17}$ eV cosmic rays
- LHCf measures forward particle spectra relevant to air showers.
The LHCf experiment

* Solar-Terrestrial Environment Laboratory, Nagoya University, Japan
** Kobayashi-Maskawa Institute, Nagoya University, Japan
*** Graduate School of Science, Nagoya University, Japan

K. Yoshida
Shibaura Institute of Technology, Japan

T. Iwata, K. Kasahara, T. Suzuki, S. Torii
Waseda University, Japan

Y. Shimizu, T. Tamura
Kanagawa University, Japan

N. Sakurai
Tokushima University, Japan

M. Haguenauer
Ecole Polytechnique, France

W. C. Turner
LBNL, Berkeley, USA

INFN, Univ. di Firenze, Italy

A. Tricomi
INFN, Univ. di Catania, Italy

J. Velasco, A. Faus
IFIC, Centro Mixto CSIC-UVEG, Spain

A.-L. Perrot
CERN, Switzerland
The LHCf experimental setup

16 tungsten + pl.scinti. layers
25mmx25mm+32mmx32mm
4 Silicon strip tracking layers

44\times X_0, 1.6 \lambda_{int}

16 tungsten + pl.scinti. layers
20mmx20mm+40mmx40mm
4 SciFi tracking layers
Calorimeter performance

- Gamma-rays ($E>100\,\text{GeV}$, $dE/E<5\%$)
- Neutral Hadrons ($E>a\,\text{few}\,100\,\text{GeV}$, $dE/E\sim40\%$)
- Neutral Pions ($E>700\,\text{GeV}$, $dE/E<3\%$)
- Shower incident position ($170\mu m / 40\mu m$ for γ, Arm1/Arm2)
 (1mm for hadron showers)

\[\gamma\]-like

\[\pi^0\]

\[\text{Had-like}\]
Brief history of LHCf

- May 2004 LOI
- Feb 2006 TDR
- June 2006 LHCC approved

- Jul 2006 construction
- Aug 2007 SPS beam test

- Jan 2008 Installation
 Sep 1st LHC beam

- Jul 2006 construction
- Aug 2007 SPS beam test

- Dec- Jul 2010
 0.9TeV & 7TeV pp
 Detector removal

- Dec 2012 - Feb 2013
 5TeV/n pPb, 2.76TeV pp
 (Arm2 only)
 Detector removal

- May-June 2015
 13 TeV pp
 Detector removal
Y. Itow "Status of LHCf"

LHCf published results

- **7 & 0.9 TeV pp photon**
 - \(\eta > 10.94 \)
 - Gamma-ray like
 - \(\eta > 10.94, \Delta \phi = 360^\circ \)
 - Published:
 - PLB 703 (2011) 128-134
 - PLB 735 (2012) 298-303

- **7 TeV pp neutron**
 - Preliminary

- **7 TeV pp**
 - \(\pi^0 \)
 - \(8.9 < y < 9.0 \)
 - \(\int Ldt = 2.53 + 1.90 \)
 - Published:
 - PRD 86 (2012) 092001

- **5 TeVn pPb**
 - \(\pi^0 \)

- **\(\eta > 10.76 \)**
 - \(d\sigma/dE \) (mb/GeV)
 - Data 2010, Stat. + Syst. error
 - DPMJET 3.04, EPOS 1.99, QGSJET II-03, SIBYLL 2.1, PYTHIA 8.145

- **5TeV p-p at 5.02 TeV (x5)**

- **-9.0 > y_{lab} > -9.2**

- **PRC 89 (2014) 065209**

- **PLB 715 (2012) 298-303**

- **Submitted PLB**

- **PLB 703 (2011) 128-134**

- **PRD 86 (2012) 092001**
Very forward neutron at 7TeV p-p

- $\eta > 10.76$: QGSJET03 good, $8.99 < \eta < 9.22$: DPMJET3 good
- Larger neutron / gamma ratio than expected

<table>
<thead>
<tr>
<th>n / γ ratio</th>
<th>Data</th>
<th>3.05 ± 0.19</th>
</tr>
</thead>
<tbody>
<tr>
<td>DPMJET3.04</td>
<td>1.05</td>
<td></td>
</tr>
<tr>
<td>EPOS 1.99</td>
<td>1.80</td>
<td></td>
</tr>
<tr>
<td>PYTHIA 8.145</td>
<td>1.27</td>
<td></td>
</tr>
<tr>
<td>QGSJET II-03</td>
<td>2.34</td>
<td></td>
</tr>
<tr>
<td>SYBILL 2.1</td>
<td>0.88</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>n / γ ratio</th>
<th>Data</th>
<th>1.26 ± 0.08</th>
</tr>
</thead>
<tbody>
<tr>
<td>DPMJET3.04</td>
<td>0.76</td>
<td></td>
</tr>
<tr>
<td>EPOS 1.99</td>
<td>0.69</td>
<td></td>
</tr>
<tr>
<td>PYTHIA 8.145</td>
<td>0.82</td>
<td></td>
</tr>
<tr>
<td>QGSJET II-03</td>
<td>0.65</td>
<td></td>
</tr>
<tr>
<td>SYBILL 2.1</td>
<td>0.57</td>
<td></td>
</tr>
</tbody>
</table>

40% E res. unfolded

Submitted to PLB
LHCf Type-I and Type-II π^0 analysis

Type-I

Type-II

(a) LHCf $\sqrt{s} = 7$ TeV
Type-II π^0 at Small Tower

(b) LHCf Arm1 $\sqrt{s} = 7$ TeV
$9.0 < y < 9.2$

(c) Arm2 Type-I

(d) Arm2 Type-II
P_z spectra Type-I + Type-II π^0

LHCf $\sqrt{s}=7$TeV

$\int Ldt=2.64+2.85\text{nb}^{-1}$

To be submitted PRD

Preliminary
LHCf π^0 yields vs collision energies

- DPMJET 3.0.6 ($\sqrt{s}=7\text{TeV}$)
- QGSJET II-04 ($\sqrt{s}=7\text{TeV}$)
- LHCf ($\sqrt{s}=7\text{TeV}$)
- LHCf ($\sqrt{s}=2.76\text{TeV}$)
- UA7 ($\sqrt{s}=630\text{GeV}$)

RHICf 510GeVpp planned

To be submitted PRD
LHC 13TeV LHCf run 2015

- Week24, Jun 9~13, LHCf dedicated low-lumi run
- Total 26.6 hrs w/ $L=0.5\sim1.6\times10^{29}\text{ cm}^2\text{s}^{-1}$
- ~39 M showers, 0.5 M π^0 obtained
- Trigger exchange with ATLAS
- Detector removal on Jun 15th during TS1
First look from 13 TeV data

LHCf photon pair invariant mass (preliminary)
LHCf Arm2 detector
LHC 13TeV p-p collisions (fill 3855)

Preliminary
ATLAS-LHCf trigger exchange

- Non-diffraction tagging by $N_{\text{trk}} \geq 2$ in ALTAS $|\eta| < 2$ ($P_T > 100$ MeV/c)
- Diffraction: 10% of LHCf data
Future prospects

• RHICf (LHCf detector at RHIC zero degree)
 – Participate Run-17 510 GeV pp at the STAR site
 – Comparison to 7&13TeV data with same p_T coverage

• And also LHC p-Pb run, and future LHC p-Oxygen ...

RHICf E_{π0} expected
510 GeV pp
6.36<y<6.70

η>5.8
18m
Summary

• The LHCf: particles spectra at very forward of LHC
 • $\eta > 8.4$, with nice performance for PID, EM energy and PT
 • So far γ, π^0, n from 0.9, 2.76 and 7 TeV p-p, and π^0 5TeV p-Pb

• Energy spectra for very forward neutron
 • Bump at large X_F, data shows more neutron yield than models

• New π^0 analysis
 • Add Type-II π^0, complete acceptance coverage
 • Comparison of 7 TeV and 2.76 TeV p-p

• LHC 13 TeV pp and Future
 • 13 TeV run successfully done in Jun 2015, analysis on-going
 • RHICf 510 GeV pp in 2017, LHC p-Pb, and more
Backup
LHCf average P_T of Type-I + Type-II π^0

- LHCf ($s=7$ TeV)
- LHCf ($s=2.76$ TeV)
- LHCf ($s_{NN}=5.02$ TeV)
- UA7 ($s=630$ GeV)

To be submitted PRD

$\langle p_T \rangle$ [MeV]

RHICf planned

$y_{beam} - y$

DPMJET 3.0.6 (p+p)
DPMJET 3.0.6 (p+Pb)
QGSJET II-04 (p+p)
QGSJET II-04 (p+Pb)
Rapidity vs Forward energy spectra

Gamma-rays @ $\sqrt{s}=7\text{TeV}$

- $\eta=5.99$
- $\eta=6.91$
- $\eta=7.60$
- $\eta=8.40$
- $\eta=8.77$

$\eta=8.7$

$\eta=\infty$

Projected edge of beam pipe

Gamma-rays @ $\sqrt{s}=14\text{TeV}$

- $460\mu\text{rad}$
- $310\mu\text{rad}$

Viewed from IP1 (red:Arm1, blue:Arm2)

Projected edge of beam pipe
Rapidity vs Forward energy spectra

Gamma-rays @ \(\sqrt{s}=7 \text{TeV} \)

- **Neutral Hadrons @ \(\sqrt{s}=7 \text{TeV} \)**

- \(\eta = 8.7 \)
- \(\eta = \infty \)

Projected edge of beam pipe

Viewed from IP1 (red:Arm1, blue:Arm2)
LHCf single γ spectra at 7TeV

- None of the models agree with data
- Data within the range of the model spread

$\eta > 10.94$

$8.81 < \eta < 8.99$

None of the models agree with data
Data within the range of the model spread

0.68 (0.53)nb$^{-1}$ on 15May2010
Y. Itoh “Status of LHCf”

LHCf single γ spectra at 900 GeV

$\eta > 10.15$ ($<$\it{\theta}$>$ = 39 μrad)

$\eta > 10.15$

$8.77 < \eta < 9.46$ ($<$\it{\theta}$>$ = 234 μrad)

May 2010, 0.3 nb$^{-1}$

(21\% normalization uncertainty)

DPMJET 3.04
QGSJETII-03
SIBYLL 2.1
EPOS 1.99
PYTHIA 8.145

PLB 715 (2012) 298-303
LHCf π^0 p_T spectra at 7TeV

PRD 86 (2012) 092001

Type-I sample
Type-I at large tower
Type-II at small tower

LHCf $\sqrt{s}=7$TeV π^0

$8.9 < y < 9.0$

$\int L dt = 2.53 \pm 1.90 \text{nb}^{-1}$

$1/\alpha_{\text{inel}} \times E d^3 \sigma/dp^3$ [GeV2]

p_T [GeV]

LHCf $\sqrt{s}=7$TeV π^0

$9.4 < y < 9.6$

$\int L dt = 2.53 \pm 1.90 \text{nb}^{-1}$

$1/\alpha_{\text{inel}} \times E d^3 \sigma/dp^3$ [GeV2]

p_T [GeV]
LHCf nuclear modification factor ($-11.0 > \eta > -8.9$)

- Very large suppression (~ 0.1) at $P_T \sim 100\text{MeV}$ region
- Models also show similar large suppression, but PT dependence?

$$R_{ppPb} \equiv \frac{\sigma_{pp}^{\text{inel}}}{\langle N_{\text{coll}} \rangle \sigma_{\text{inel}}^{pp}} \frac{E d^3 \sigma_{ppPb} / dp^3}{E d^3 \sigma_{pp} / dp^3} \quad \langle N_{\text{coll}} \rangle = 6.9 \pm 0.7$$
LHCf $\text{EM}(\pi^0)$ energy flow vs rapidity (7TeV)

Plot by N. Sakurai
LHCf neutron energy flow vs rapidity

Plot by N. Sakurai
ATLAS ND Tagged LHCf γ and neutrons
13 TeV pp MC (PYTHIA)
XF scaling of very forward neutron

RHIC PHENIX (200 GeV),
ISR (30.6-62.7 GeV)

LHCf 7 TeV neutron (Arm1 only)
0 < P_T < 0.11 x_F GeV/c
PT\(_{\pi^0}\) spectra Type-I + Type-II \(\pi^0\)

To be submitted PRD

![Graphs showing PT\(_{\pi^0}\) spectra for different \(y\) ranges from 8.8 to 10.8.](image)

Legend
- LHCf (stat.+syst.)
- DPMJET 3.06
- QGSJET II-04
- SIBYLL 2.1
- PYTHIA 8.185
- EPOS LHC

Note: Preliminary
Feynman scaling in π^0 production

- LHCf π^0 spectra at $\sqrt{s} = 2.76$ and 7 TeV (preliminary)
- Soon compared w/ LHC 13 TeV, and future RHICf (510GeV)

To be submitted PRD
Detector performance

Energy Resolution

\[\frac{\sigma_{E}}{E} = \frac{31.3 \pm 2.8}{E} \]

E\(_{\gamma}\) resolution

Energy resolution

Number of event

\[\sigma_{x} = 172 \, \mu m \]

Position resolution

For hadron, \(\Delta x \approx 2.5 \, mm \)

E\(_{\text{had}}\) resolution

- Black dots: Small tower
- Red dots: Large tower

200 GeV electrons

- 100 GeV
- 200 GeV

350 GeV protons

- Energy [GeV]
- Number of event

- X-pos [mm]
Y. Itoh “Status of LHCf"

EM shower (SPS)
NIM, A671 (2012) 129-136
JINST, 5, P01012, 2010

Hadronic shower (LHC MC)
JINST, 9, P03016 (2014)

PID (SPS energy)

Energy Resolution (arm2)
- SP5207 25mm cal. with 800V
- SP5207 32mm cal. with 800V
- MC 25mm cal.
- MC 32mm cal.
 - 800V (High Gain)

Energy resolution (%)

Position Resolution for electron showers (X Side)
- Data
- Simulation

Position resolution (µm)
Hadron shower reconstruction

Check by SPS 350GeV p beam

- Experiment
- MC DPM3
- MC QGS2

\(\chi^2 = 31.5/28 \text{(NDF)} \)
Expected Results (single photons)

- Photon spectra at 4 rapidity samples
- 12 hours statistics (12 nb\(^{-1}\) effective luminosity; 360nb\(^{-1}\) delivered)
- Statistical error is almost negligible except at the highest energy bins
Expected Results (single neutrons)

- Neutron spectra at 4 rapidity samples
- 12 hours statistics (12 nb\(^{-1}\) effective luminosity; 360nb\(^{-1}\) delivered)
 - RHICf resolution not considered; true spectra
 - Statistical error is almost negligible
Possible future p-Oxygen run

- Important missing information; nuclear shadowing
- Large suppression 0.1 for p-Pb for very forward π^0 at low PT
- Less expected for p-Light Ion, but model dependent (~25%)
- Oxygen beam is technically feasible in LHC