Performance of LHCf in Run II

Hiroaki MENJO Nagoya University, Japan
on behalf of the LHCf collaboration

LHCP2015, St. Petersburg, 31 Aug.-5 Sep.
The LHCf collaboration

* Solar-Terrestrial Environment Laboratory, Nagoya University, Japan
** Kobayashi-Maskawa Institute, Nagoya University, Japan
*** Graduate School of Science, Nagoya University, Japan

K. Yoshida
Shibaura Institute of Technology, Japan

T. Iwata, K. Kasahara, T. Suzuki, S. Torii
Waseda University, Japan

Y. Shimizu, T. Tamura
Kanagawa University, Japan

N. Sakurai
Tokushima University, Japan

M. Haguenauer
Ecole Polytechnique, France

W. C. Turner
LBNL, Berkeley, USA

INFN, Univ. di Firenze, Italy

A. Tricomi
INFN, Univ. di Catania, Italy

A-L. Perrot
CERN, Switzerland
LHCf is one of the LHCf forward experiments, motivated for testing the hadronic interaction models used in the air shower simulations for Ultra-High Energy Cosmic Rays UHECRs (~ 10^{20}eV) at LHC

Key Parameters

- Inelastic Cross Section → TOTEM, ATLAS, CMS, ALICE
- Forward Energy Spectrum → LHCf, ZDC and etc.
- Inelasticity $k = 1 - p_{\text{lead}} / p_{\text{beam}}$ → LHCf, ZDC and etc.
- Multiplicity → Central detectors
- + Nuclear Effect @ CR-Air
Two LHCf detectors (Arm1 & Arm2) are installed into the very forward region of the LHC interaction point (IP1). LHCf can measure neutral particles (γ, n) at the rapidity range $\eta > 8.4$.
The LHCf detectors

Sampling and Positioning Calorimeters
- \(W \) (44 r.l, 1.7\(\lambda_1 \)) and Scintillator x 16 Layers
- Four positioning sensitive layers
 - XY-Scintillator bars (Arm1) and XY-Silicon strip (Arm#2)
- **Each detector has two calorimeter towers, which allow to reconstruct \(\pi^0 \)**

Expected Performance
- Energy resolution (> 100GeV)
 - < 5% for Photons
 - 40% for Neutrons
- Position resolution
 - < 200\(\mu \)m for Photons
 - a few mm for Neutrons

Front Counter
- thin scintillators with 80x80mm\(^2\)
- To monitor beam condition.
- For background rejection of beam-residual gas collisions by coincidence analysis
The LHCf detectors

- Arm1 Detector
- GSO Scintillator
- Silicon strip detector
- Detector in the LHC tunnel
Results in Run I

pp, 7TeV Photon
- PLB 703 (2011) 128-134
- PLB 715 (2012) 298-303

pp, 7TeV Neutron
- Submitted to PLB (arXiv:1503.03505)

pPb, 5TeV
- PRD 86 (2012) 092001
- Submitted to PLB (arXiv:1507.08764)

LHCf √s=7TeV π^0
- 8.9 < y < 9.0
 - PRC 89 (2014) 065209

LHCf √s=7TeV γ
- 10.94 < η < 10.96
Operation in 2015

- LHCf physics operation with pp $\sqrt{s}=13\text{TeV}$ has been completed!!
 - LHCf detectors were installed in Nov. 2014
 - Special physics operation with low pile-up in 9 - 13 June 2015.
 - After the operation, LHCf detectors were removed on 15 June during TS1.

Photo @ CERN
Most of collaborators were in the front of the LHCf control room.
LHCf in Run II

- **Physics Motivation**
 - Test the hadronic interaction models at the highest collision energy. $E_{\text{Lab}}=0.9 \times 10^{17}\text{eV}$
 - Energy Scaling
 - Enlarge the p_T acceptance.

- **Detector/DAQ upgrades for Run II**
 - Improved the radiation hardness with replacing Plastic scintillators → GSO scintillators
 - Modified the silicon strip detectors to improve the dynamic range.
 - Optimized the layer depths of silicon strip detector in Arm2.
 - Upgraded the trigger system with new logic board.
 - Installed a new layer system as a calibration source for PMTs
Special run in June 2015

- The LHCf dedicated run.
 - 6 physics fills
 - Low Pileup: $\mu = 0.01-0.03$
 - $\mu=0.01$ for photon, neutron analysis
 - $\mu=0.03$ for π^0 analysis

Coincidence-signal rate of Front Counters (\propto Luminosity)

$\beta^*=19m, I_b=2 \times 10^{10}$ $\beta^*=19m, I_b=10^{11}$, separation collisions
Operation in Run II

- 26.6 hours of operation with DAQ rate of 200 - 500 Hz
- 39 M shower events and 0.53 M \(\pi^0 \) events were obtained.
- The final triggers of LHCf were sent to ATLAS for common operation.

<table>
<thead>
<tr>
<th></th>
<th>Arm1</th>
<th>Arm2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shower Events</td>
<td>18 M</td>
<td>21 M</td>
</tr>
<tr>
<td>(\pi) Events</td>
<td>0.22 M</td>
<td>0.31 M</td>
</tr>
</tbody>
</table>
Arm1 Event Display

LHCf Arm1 Detector
π⁰ Candidate Event
LHC p-p, \(\sqrt{s} = 13 \text{ TeV} \) Collisions

\(E_{\gamma} = 323 \text{ GeV} \)

\(E_{\gamma} = 407 \text{ GeV} \)
Arm1 Event Display

LHCf Arm1 Detector

Arm2 Event Display

LHCf Arm2 Detector

\[\pi^0 \text{ Candidate Event} \]

LHC p-p, \(\sqrt{s} = 13 \text{ TeV} \) Collisions

\[E_\gamma = 323 \text{ GeV} \]
\[E_\gamma = 407 \text{ GeV} \]

\[E_\gamma = 1.01 \text{ TeV} \]
\[E_\gamma = 1.02 \text{ TeV} \]
Peaks corresponding to π^0, η

- Event sample for measurement of π^0, η inclusive spectra
- Evaluate the energy scale of calorimeters.

Energy thresholds for π^0 and η detections

- For π^0: $E_{\pi^0} > 600\text{GeV}$
- For η: $E_{\eta} > 2.2\text{ TeV}$
Stability of Energy Scale

- The energy scales of detectors could be monitored by peak mass position of π^0.
- They were stable within a few %.

![Graph showing stability of energy scale over time with LHCf data at p-p $\sqrt{s} = 13$ TeV.](image)
The energy scales of detectors could be monitored by peak mass position of π^0.

They were stable within a few %.

- Gain of each PMT were also monitored by using a laser calibration system.
Signals of LHCf final trigger were sent to the ATLAS DAQ system to trigger the ATLAS.

Physics Items of the common operation

- **Diffractive Physics**
 Study of forward particle production with event category of diffractive/non-diffractive

- **Measurement of $p-\pi$ interaction**
 A MC study by PYTHIA

Diagram

- **L1**
 - **L1_LHCF**
 - **L1_ID**
 - **Raw**
 - **Rec.**

- **Final Trigger**
 - **Raw**
 - **Rec.**

- **Merge**
LHCf had an operation in 9-13 June, 2015 with low-pileup collisions. In 26.6 hours operation, 39 M showers and 0.5 M π^0 events were obtained.

During the operation, the detectors and the DAQ worked without any problems. The energy scale of calorimeters were stable within a few %.

Common operation with ATLAS has been performed with sending the LHCf trigger to ATLAS.

Analysis for physics are on-going now.