High-energy deuteron measurement
with the CAPRICE98 experiment

Presented by
Elena Vannuccini
National Institute of Nuclear Physics
and
University of Florence (Italy)

On behalf of
the CAPRICE98 collaboration
The WiZard/CAPRICE98 experiment
(Cosmic AntiProton Ring-Imaging Cherenkov Experiment)

- Launched on May 28, 1998
 Fort Sumner (New Mexico) → Holbrooke (Arizona)
- Flight duration:
 24h @ 36Km (~5.5g/cm²)
- Geomagnetic cutoff
 ~4.3 GV
The WiZard/CAPRICE98 experiment
(Cosmic AntiProton Ring-Imaging Cherenkov Experiment)

- Launched on May 28, 1998
 Fort Sumner (New Mexico) → Holbroke (Arizona)
- Flight duration: 24h @ 36Km (~5.5g/cm²)

- Positrons (4.5-26 GeV) Boezio et al., AdSpR 27 (2001), 669
- Hydrogen and helium Boezio et al., AP 19 (2003), 583
- Atmospheric muons Boezio et al., PhRvD 67 (2003), 072003
 → Session OG 1.1 (This work)
- 2H
- 3He
- Atmospheric nuclei → Session HE 3.1
The CAPRICE98 apparatus

- **Time-Of-Flight system**
 (230 ps)

- **Spectrometer**
 - Drift chamber tracking system
 (18+12 position measurements with ~100 μm resolution)
 - Superconducting magnet
 (0.1-1.8 T)
 \(\rightarrow \) MDR ~ 400GV

- **Silicon-Tungsten calorimeter**
 (7.2 \(X_0 \) and 0.33 \(\lambda_0 \))

- **Gas-RICH detector**
 - \(C_4F_{10} \) radiator ~1m
 (n~1.0014 @ flight)
 - MWPC ethane + TMAE
 (\(N_0 \sim 60 \) cm\(^{-1} \) @ flight)
The CAPRICE98 apparatus

- **Time-Of-Flight system**
 (230 ps)

- **Spectrometer**
 - * Drift chamber tracking system
 (18+12 position measurements with ~100 µm resolution)
 - * Superconducting magnet
 (0.1-1.8 T)
 \[\rightarrow \text{MDR} \sim 400 \text{GV} \]

- **Silicon-Tungsten calorimeter**
 (7.2 X_0 and 0.33 λ_0)

- **Gas-RICH detector**
 - C_4F_{10} radiator ~1m
 (n~1.0014 @ flight)
 - * MWPC_ ethane + TMAE
 ($N_0 \sim 60 \text{ cm}^{-1} @ \text{flight}$)

Cherenkov threshold rigidity:
- **Muons** \[\rightarrow \sim 2 \text{ GV} \]
- **Protons** \[\rightarrow \sim 18 \text{ GV} \]
- **Deuterons** \[\rightarrow \sim 35 \text{ GV} \]
Event topology in the RICH

$\theta_{\text{max}} \sim 50 \text{ mrad}$

$N_{\text{pe}}^{\text{max}} \sim 17 \Rightarrow N_{\text{eff}} \sim 41$

$\sigma_{\theta} \sim 1 \text{ mrad}$

Relativistic electron (R~2 GV)

Z=1 particle (R~32 GV) → candidate deuteron
Deuteron selection

Deuterons selected out of singly charged particles by requiring:

- No Cherenkov signal in the RICH
Deuterons selected out of singly charged particles by requiring:

- **No Cherenkov signal in the RICH**

Proton background distribution and deuteron selection efficiency estimated with Monte Carlo technique.

Simulation based on characteristic functions derived form experimental data:

- **High-energy Spectrometer Resolution Function** \rightarrow SRF
- **Probability of having no Cherenkov signal** \rightarrow $P_{0\text{ff}}(\beta)$
Two independent estimates of the SRF

1) **MAGNET-OFF METHOD**
 - SRF evaluated from relativistic \((R>5\ \text{GV})\) ground muons collected with magnet off
 - straight tracks \((\eta=0)\)

2) **RICH METHOD**
 - SRF evaluated from flight protons above the Cherenkov threshold
 - Independent estimate of the deflection from the measured Cherenkov angle

\[\delta = \eta - \eta_{\text{true}} \]

\[\xi = \eta - \eta_{\text{RICH}} \]
Probability of having no Cherenkov signal

- \(P_{\text{off}} \) parameterized using ground muons (\(R_{\text{th}} \sim 2 \) GV)

→ Spectrometer effect strongly reduced

Spectrometer response unfolded from the experimental distribution of muons
Comparison between data and simulation

Elena Vannuccini
ICRC 2003

Tsukuba
Japan
Deuterium abundance at the top of atmosphere

Standard Leaky-Box Model predictions

Deuterium abundance consistent with the assumption that light CRs have the same propagation history of heavier CRs
Conclusions

- First result on the deuterium flux above 10 GeV/n of kinetic energy

- d/He consistent with the assumption that the abundances of light cosmic rays are described by the same propagation parameters of heavier nuclei