SEARCH FOR SCALAR ELECTRONS AND WINOS AT THE CERN pp COLLIDER

UA2 Collaboration

a Laboratoire de l’Accélérateur Linéaire, Université de Paris-Sud, F-91405 Orsay, France
b Centre d’Etudes Nucléaires de Saclay, F-91191 Gif-sur-Yvette Cedex, France
c Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK
d CERN, CH-1211 Geneva 23, Switzerland
e Dipartimento di Fisica dell’Università di Milano and INFN, Sezione di Milano, I-20133 Milan, Italy
f Laboratorium für Hochenergiephysik, Universität Bern, Sidlerstraße 5, CH-3012 Bern, Switzerland
g Dipartimento di Fisica dell’Università di Pisa and INFN, Sezione di Pisa, Via Livornese, S. Piero a Grado, I-56100 Pisa, Italy
h Dipartimento di Fisica dell’Università di Perugia, Via Pascoli, I-06100 Perugia, Italy
i Institut für Hochenergiephysik der Universität Heidelberg, Schrödterstraße 90, D-6900 Heidelberg, FRG

Received 25 January 1990

A search for supersymmetric decays of the Z boson into a pair of scalar electrons or winos (partners of the electron and W boson) has been made with the upgraded UA2 experiment at the CERN pp collider at \(\sqrt{s} = 630 \text{ GeV} \). The analysis of the sample of electron pairs, corresponding to an integrated luminosity of 7.4 pb\(^{-1}\), shows no evidence for such exotic decays. The 90% confidence level lower mass limits obtained exclude selectron masses up to 40 GeV/c\(^2\) in the case of a light photino, and wino masses up to 45 GeV/c\(^2\) in the case of a light scalar neutrino.
1. Introduction

Scalar leptons and gauginos, partners of leptons and gauge bosons in supersymmetric (SUSY) models [1–3] can be produced in hadron colliders through the decay of intermediate vector bosons. In a previous letter [4] we reported the results of a search for scalar electrons (\(\tilde{e}\)), and winos (\(\tilde{W}\)) in the exotic decay of the Z. That analysis was performed using the data accumulated by the UA2 detector during the period 1983–1985, corresponding to an integrated luminosity of 910 nb\(^{-1}\).

The UA2 detector has been rebuilt, including new end-cap calorimeters and a new central detector. The commissioning of the new antiproton accumulator complex (AAC) enabled the CERN \(\bar{p}p\) collider to run at peak luminosities of up to \(3 \times 10^{30}\) cm\(^{-2}\) s\(^{-1}\).

Thanks to this successful operation of the CERN \(\bar{p}p\) complex, the upgraded UA2 detector has collected a total data sample of \(\sim 7.8\) pb\(^{-1}\) during the 1988 and 1989 collider runs, out of which \(\sim 7.4\) pb\(^{-1}\) has been used in this analysis.

We report here on the search for exotic decays of the Z boson into final states containing electron pairs, using that data sample. We have studied electron pairs as a possible signal for
\[Z \rightarrow \tilde{e} \tilde{e} \rightarrow e\bar{e} \bar{e} , \]
\[Z \rightarrow \tilde{W} \tilde{W} \rightarrow e\bar{e} \bar{e} \bar{e} . \]

The previous UA2 limits on \(m_{\tilde{e}}\) and \(m_{\tilde{W}}\) [4] are significantly improved, due to the \(\sim 8\) times increase in the integrated luminosity and the improved detector performance.

In section 2 we present a brief description of the UA2 apparatus, emphasising the parts relevant to the analysis presented here. In section 3 the electron selection criteria and the resulting electron pair sample are discussed. Estimates for rates of known electron pair sources in UA2, mainly genuine electron pairs from Drell–Yan, and of fake electrons from the QCD background are given in section 4. Section 5 is devoted to the discussion of a possible SUSY signal and its signatures. Finally in the last section, we present the regions in the \((m_{\tilde{e}}, m_{\tilde{e}})\) and \((m_{\tilde{W}}, m_{\tilde{W}})\) planes excluded by this analysis.

A search for squarks and gluinos produced by the strong interactions, with data collected by UA2 during the same running period, is presented in another letter [5].

2. The UA2 apparatus

The UA2 detector has been upgraded, during the period 1985–1987, in order to exploit the increased luminosity of the CERN \(\bar{p}p\) collider [6]. The main goals of the upgrade programme were:
- Full calorimeter coverage to improve the missing transverse momentum (\(P_T\)) measurement.
- Improved electron identification.
- A new trigger and data acquisition system to cope with the increased luminosity.

A central calorimeter (pseudorapidity range \(-1<\eta<1\)) and two end cap calorimeters [7] \((1<|\eta|<3)\) provide full azimuthal (\(0^\circ \leq \phi \leq 360^\circ\)) coverage, down to \(6^\circ\) from the beam axis. The calorimeters are subdivided into 624 cells and are made of lead/iron/scintillator sandwiches. The energy resolution for electromagnetic showers is typically \(\sigma_E \sim 17\%\sqrt{E} \) (\(E\) in GeV). With the improved calorimeter coverage, a good measurement of the missing transverse momentum (\(P_T\)) is achieved. The \(P_T\) resolution, \(\Delta\), can be parametrised as
\[
\frac{dn}{d(P_T)^2} \sim \frac{1}{\Delta^2} \exp\left[-\frac{(P_T/\Delta)^2}{2}\right] ,
\]
\[\Delta = \alpha (E_T^{\text{jet}})^\beta , \quad \text{with } \alpha = 0.8 , \beta = 0.4 ,\]
where E_{T}^{tot} is the total transverse energy measured in the calorimeter. A more comprehensive discussion of the P_T measurement and resolution can be found in ref. [5].

A longitudinal section of a quarter of the UA2 detector is shown in fig. 1. It consists of:
- A scintillating fibre detector (SFD) [8] divided into a tracking part (6 stereo triplets) followed by a 1.5 radiation length thick lead converter, and two more stereo triplet layers, used as a preshower detector. The SFD is the outer component of the central detector.
- Two layers of silicon pad detectors (SI) [9], one immediately outside the beam pipe at a radius of 3.5 cm, the second at a radius of 14.5 cm. The counters are used for tracking and ionisation measurements.
- A transition radiation detector (TRD) [10] consisting of two sets of radiator + X-ray detector, which can be used to improve the electron signature.
- A cylindrical drift chamber, with jet geometry, the jet vertex detector (JVD) [11], located between the two silicon layers, used for track reconstruction.

The central detector is complemented in the end cap regions by a system of proportional tubes (ECPT) [12], which provides both tracking and preshower information. A time of flight (TOF) system provides a triggering signal.

A three level trigger system [13] is used, based mainly on calorimeter information. The analysis presented here uses the data from the electron pair trigger. At least two electromagnetic clusters ($|\eta| \leq 2$), separated by at least 60° in azimuth, and with transverse energies above 5.5 GeV, are required for an event to satisfy this trigger. Electromagnetic clusters (EM) are selected with respect to the lateral (cluster radius) and longitudinal shower profile. The data sample selected by the electron pair trigger consists of ~300,000 events (1988 + 1989).

3. Electron selection

Electron candidates are selected by requiring an electromagnetic cluster (CAL cut), associated with a reconstructed track (TRK cut) and a preshower hit. A quality factor ($P(\chi^2)$) for the track–calorimeter shower profile match is computed by comparing the calorimeter lateral and longitudinal shower profiles, to those expected from isolated electrons, impinging along the track direction. Further cuts use this quality factor ($P(\chi^2)$ cut), the preshower pulseheight and
its displacement (PS cut). In addition, in the end cap regions, where more background from photon conversions in the material near the beam pipe is observed, we require the outer silicon pulse height to be compatible with one minimum ionizing particle (Si cut).

The efficiency of these cuts as measured using electrons from W events [14] in the central (CC) and end cap (EC) regions is

\[\varepsilon_{cc} = \varepsilon_{CAL} \times \varepsilon_{TRK} \times \varepsilon_{PS} \times \varepsilon_{P(\pi^2)} = (65.6 \pm 2.0)\% , \]
\[\varepsilon_{EC} = \varepsilon_{CAL} \times \varepsilon_{TRK} \times \varepsilon_{PS} \times \varepsilon_{Si} = (55.0 \pm 2.6)\% . \]

The electron pair sample discussed below contains mainly electrons with lower \(P_T \) than those from W→ev decay. Varying the selection cuts has shown that no significant additional loss of efficiency occurs for low \(P_T \) electrons [15].

In addition to the selection criteria discussed above, we require a reconstructed event vertex to be within ±300 mm of the detector centre. The corresponding efficiency is \(\varepsilon_{vz} = (98 \pm 1)\% \).

Applying these electron selection criteria to both electron candidates in the event, we obtain a total sample of 562 electron pair candidates with a mass above 10 GeV/c\(^2\). The \(e^+e^- \) mass spectrum for these events is shown in fig. 2. After background subtraction, the spectrum of genuine electron pairs can be extracted (see section 4.2).

Decays of the Z boson into \(e \) and \(\bar{W} \) pairs are expected to produce, in general, electron pairs of rather high invariant mass. We restrict our analysis therefore to the subsample of electron pairs with masses above 20 GeV/c\(^2\). This sample contains 243 events \((M_{ee} > 20 \text{ GeV/c}^2)\), of which 123 have masses larger than 70 GeV/c\(^2\) and are identified as Z→e\(^+\)e\(^-\) decays [14]. A detailed study of the low mass region \((10 < M_{ee} < 20 \text{ GeV/c}^2)\) and of the Drell–Yan signal will be reported in a separate paper [15].

4. Drell–Yan signal and background estimation

Genuine electron pairs from the Drell–Yan process,

\[p + p \rightarrow \gamma/Z + X \rightarrow e^+e^- + X , \]

and fake electrons, from QCD processes, are the two main contributions to our electron pair sample. The “QCD background” where hadronic jets fake the electron signature can be estimated using the data.

4.1. Background evaluation

Starting from the sample of electromagnetic cluster pairs (~300,000 events, EM–EM sample), we apply the electron cuts to one cluster in the event, to extract the so-called EM–E sample. The final sample (E–E sample) is obtained by requiring both candidates to satisfy the electron selection criteria. Neglecting events consisting of a genuine electron produced in association with an electromagnetic cluster from a jet, we can establish the following relations:

\[N_{EM-EM} = B + S , \]
\[N_{EM-E} = \left(\frac{2}{R} - \frac{1}{R^2} \right) \times B + (2e - e^2) \times S , \]
\[N_{E-E} = \frac{1}{R^2} \times B + e^2 \times S , \]

where \(N_x \) is the number of events in sample \(x \), \(B \) is the number of background electromagnetic jet pairs (fake electron pairs), \(S \) is the number of genuine electron pairs, \(R \) is the rejection against hadrons and \(e \) is the efficiency for electrons.
For our data sample, at low masses (below ~ 50 GeV/c²)

\[
\frac{1}{R} \times B \gg S.
\]

We can then compute the rejection \(R \), by comparing the (EM-E) and (EM-EM) distributions. The background fraction in the final sample (E-E sample) is estimated to be \(1/R^2 \times B \). The results are summarized in table 1, for different mass bins, together with the corresponding numbers of events. The background rejection in the central (\(R_{OC} \sim 40 \)) and the end cap (\(R_{EC} \sim 30 \)) regions being different, the background estimate is done separately for each of these regions.

4.2. Estimate of the Drell–Yan signal

We use a simple Monte Carlo generator of Drell–Yan pairs, which contains lowest order matrix elements for Drell–Yan and Z production,

\[
q\bar{q} \to \gamma/Z \to e^+e^-,
\]

and

\[
q\bar{q} \to \gamma/Z \to \tau^+\tau^- , \quad \tau^\pm \to e\nu\bar{\nu},
\]

In this simulation we use the structure functions of ref. [16]. The \(e^+e^- \) transverse momentum, \(P_T \), is generated according to the model of ref. [17]. The simulation program takes into account the detector geometrical acceptance and the effect of the trigger threshold, as well as the electron energy resolution. The \(P_T \) resolution is parametrized as a function of the electron pair \(P_T \) as described in ref. [18].

We normalise the expected distribution to the number of events observed in the Z region (\(M_{ee} > 70 \) GeV/c², 123 events), thus reducing the uncertainty on the theoretical prediction arising from higher order terms (K-factors). The results of this estimation for \(pp \to Z/\gamma \to e^+e^- \) and \(pp \to Z/\gamma \to \tau^+\tau^- , \tau^\pm \to e\nu\bar{\nu} \), processes are summarized in table 1.

Using the eurojet Monte Carlo [19], we have estimated the contribution of \(b\bar{b} \) production where both quarks decay into electrons. Because of the much lower efficiency of the selection criteria for the non-isolated electrons from \(b \) decays, this contribution was found to be negligible.

Table 1 shows that, after subtracting the QCD background, the observed signal is in fair agreement with the expected Drell–Yan signal.

5. Scalar electron or wino production

A possible signal from decays of the Z boson into \(\bar{e} \) or \(\bar{W} \) pairs is estimated using the Monte Carlo described above, where we have included the matrix elements for

\[
q\bar{q} \to \gamma/Z \to \bar{e}\bar{e} \quad (A),
\]

\[
q\bar{e} \to \gamma/Z \to \bar{W}\bar{W} \quad (B).
\]

The first process (A) is generated assuming that:

- The supersymmetric partners of the left handed electron (\(\tilde{e}_L \)) and of the right handed electron (\(\tilde{e}_R \)) are degenerate in mass (\(m_{\tilde{e}_L} = m_{\tilde{e}_R} \)). In this case we have

\[
I'(Z \to \tilde{e}\tilde{e}) / I'(Z \to ee) = 0.5 \quad (m_\tilde{e} \approx 0).
\]

- The photino (\(\tilde{\gamma} \)) is the lightest supersymmetric particle (LSP) and stable (conservation of R-parity). The \(\tilde{e} \) decays into an electron and a photino (\(\tilde{e} \to e + \tilde{\gamma} \)), with the \(\tilde{\gamma} \) escaping detection.

or the second process (B), we assume that:

- The \(\bar{W} \) is a pure gaugino. The Z coupling to \(\bar{W} \) pairs is then relatively strong:

<table>
<thead>
<tr>
<th>Mass bin</th>
<th>Data</th>
<th>QCD background</th>
<th>Drell–Yan/Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 < (M < 32)</td>
<td>77</td>
<td>41.2 ± 2.7</td>
<td>47.1 ± 6.8</td>
</tr>
<tr>
<td>32 < (M < 50)</td>
<td>30</td>
<td>10.1 ± 0.7</td>
<td>19.1 ± 4.3</td>
</tr>
<tr>
<td>50 < (M < 70)</td>
<td>13</td>
<td>1.1 ± 0.1</td>
<td>7.3 ± 2.7</td>
</tr>
<tr>
<td>(M > 70)</td>
<td>123</td>
<td>0.4 ± 0.1</td>
<td>123 ± 11</td>
</tr>
</tbody>
</table>

\(^{a1}\) Only statistical errors are included for the estimate of the expected Drell–Yan/Z contribution.
\[\Gamma(Z \to \tilde{\nu}\tilde{\nu}) / \Gamma(Z \to ee) \approx 9.6 \quad (m_{\phi} \approx 0). \]

The $\tilde{\nu}$ is the LSP, and the branching ratio for the decay $\tilde{\nu} \to e + \tilde{\nu}$ is larger than 20%. The $\tilde{\nu}$ escapes detection.

For both processes, the final states contain an electron pair in association with missing transverse momentum, resulting from the escaping $\tilde{\nu}$ or $\tilde{\nu}$. In addition, combining the electron pair topology with the p_T measurement results in an increased rejection against rare cases of background events, in which large p_T is generated by experimental effects.

This is illustrated by the $p_{T\tilde{\nu}}$ versus p_T distribution, shown in fig. 3 for the decay $Z \to \tilde{\nu}e\tilde{\nu}$ with a particular set of masses. $p_{T\tilde{\nu}}$ is the projection of the pair transverse momentum on the e^+e^- internal bisector,

\[p_{T\tilde{\nu}} = (p_{Te1} + p_{Te2}) \times \cos(\frac{1}{2} \delta \phi), \]

where p_{Te1} and p_{Te2} are the electron transverse momenta, and $\delta \phi$ the azimuthal angle between the two electrons. $p_{T\tilde{\nu}}$ is a good measure of the electron pair topology and is less sensitive to shower fluctuations in the calorimeter. While p_T and $p_{T\tilde{\nu}}$ are expected to be rather uncorrelated in conventional processes, they are strongly correlated in the case of a signal from SUSY particles.

Table 2 summarizes the rates expected in UA2, after two sets of kinematical cuts, for $m_{\tilde{\nu}}=35$, $m_\tau = 20$ GeV/c2 (process A), $m_{\tilde{\nu}} = 42$ GeV/c2, $m_\tau = 0$ (process B). The normalization factor is identical to the one used for the Drell–Yan/Z estimate. The observed number of events, and the expectations from conventional processes (QCD background, Drell–Yan and τ pair production) for the same kinematical cuts are also included in this table.

![Fig. 3. SUSY Monte Carlo distributions for $Z \to \tilde{\nu}e\tilde{\nu}$ decays, with $m_{\tilde{\nu}}=35$ GeV/c2 and $m_\tau = 20$ GeV/c2, for: (a) p_T versus $p_{T\tilde{\nu}}$, (b) $p_{T\tilde{\nu}}$, projection of (a), (c) p_T projection of (a), (d) electron pair mass.](image-url)
Table 2

<table>
<thead>
<tr>
<th>Selection</th>
<th>I</th>
<th>II</th>
</tr>
</thead>
<tbody>
<tr>
<td>data</td>
<td>number of events</td>
<td>5</td>
</tr>
<tr>
<td>QCD background + expected Drell-Yan</td>
<td>number of events</td>
<td>3.0</td>
</tr>
<tr>
<td>$Z \rightarrow \tilde{\chi} \tilde{\chi}$</td>
<td>acceptance (%)</td>
<td>46</td>
</tr>
</tbody>
</table>
| $m_\tilde{\chi} = 35$, $m_\chi = 20$ (GeV/c^2) | expected number of events | 7.1 | 5.9
| $Z \rightarrow \tilde{\tau} \tilde{\tau}$ | acceptance | 65 | 61 |
| $m_{\tilde{\tau}_1} = 42$, $m_{\tilde{\tau}_2} = 0$ (GeV/c^2) | expected number of events | 16.5 | 15.4 |

6. Scalar electron and wino mass limits

To derive limits on the $\tilde{\chi}$ and $\tilde{\chi}^+$ mass values, we compare our sample of e^+e^- pairs with invariant masses above 20 GeV/c^2 with the predictions of the model, where we have included contributions from either process $Z \rightarrow \tilde{\chi} \tilde{\chi}$ or $Z \rightarrow \tilde{\chi}^+ \tilde{\chi}^-$, in addition to the signal from Drell-Yan (pp $\rightarrow Z \rightarrow e^+e^-$ or $\tau^+\tau^-$ with $\tau \rightarrow e\nu\nu$), and QCD background. This analysis is carried out using three kinematical variables to characterize an event:
- The e^+e^- pair mass (M_{ee}).
- The missing transverse momentum P_T^η.
- The η projection of the electron pair transverse momentum (P_T^η).

Fig. 4 shows the distribution of electron pairs with masses below 70 GeV/c^2, in the (P_T^η, P_T) plane. As shown in table 2, we observe two events in the region $P_T^\eta > 10$ GeV/c and $P_T > 7$ GeV/c, where most of the contribution from SUSY processes is expected.

Mass limits for SUSY particles are obtained by dividing the M_{ee}, P_T^η, P_T space into 19 independent regions and evaluating for each region the contribution from Drell-Yan conventional processes and QCD background as well as the expected SUSY signal. The latter is calculated using the Monte Carlo simulation for any choice of $(m_\tilde{\chi}, m_\chi)$ or $(m_{\tilde{\tau}_1}, m_{\tilde{\tau}_2})$ mass values. The results are then used to define a likelihood ratio RL:

$$ RL_{\text{exp}} = \prod_{i=1}^{19} \left(\frac{P_T^0}{P_T^i} \right)^{N_i} $$

where N_i is the number of events in zone i and P_T^0 (P_T^i) is the expected fraction of events in zone i without (with) the SUSY contribution.

For each set of mass values for SUSY particles, a likelihood ratio distribution is then generated by a Monte Carlo program for the case of no SUSY signal (dn^0/dRL), and if a SUSY signal is present (dn^s/dRL). A 90% CL exclusion value, RL_{90}, is then defined by the relation

$$ \left(\int_{RL_{90}} dRL \right) / \left(\int_{RL_{90}} dRL \right) = 0.1. $$
The chosen set of mass values for SUSY particles is then excluded to a confidence level of at least 90% if $R_{\exp} > R_{90}$.

There is no evidence for a SUSY signal in our data, and the regions of the $(m_{\tilde{e}_L}, m_{\tilde{e}_R})$ and $(m_{\tilde{\nu}}, m_{\tilde{\nu}})$ planes excluded at the 90% confidence level are shown in fig. 5.

Our analysis excludes scalar electron masses up to 40 GeV/c^2 at 90% confidence level and up to 38 GeV/c^2 at 95% CL for massless photinos. In the case where \tilde{e}_L and \tilde{e}_R masses are different (non degenerate case), the cross section for \tilde{e} pair production can be reduced by a factor 0.42 in the worst case ($m_{\tilde{e}_L} \gg m_{\tilde{e}_R}$) [3]. In such a scheme we exclude the \tilde{e} masses up to 33 (31) GeV/c^2 at 90% (95%) CL.

In the case of massless scalar neutrinos, we exclude $\tilde{\nu}$'s lighter than 45 GeV/c^2 at 90% (and 95%) confidence level within the assumption of section 5 (branching ratio of 20%). As shown in fig. 5, the previous UA2 limit obtained with the data taken by UA2 up to 1985 [4] is considerably improved. The bounds on the $\tilde{\nu}$ mass obtained by our analysis are less severe if the branching ratio for the $\tilde{\nu}$ decay into an electron is less than 20%. For a branching ratio of 10%, $\tilde{\nu}$ with masses in the range 20–42 GeV/c^2 (30–37 GeV/c^2) are excluded at 90% (95%) confidence level in the case of a light $\tilde{\nu}$. In this paper, we have considered that the $\tilde{\nu}$ was a pure gaugino. If a pure higgsino state is considered, the production cross section decreases by a factor ≈ 8. Then the 90% CL limit at 45 (42) GeV/c^2 holds only if a higgsino decay rate of 55% (30%) is assumed.

Because of the normalisation procedure used in this analysis, the theoretical uncertainties on the Z production cross section do not affect rates of SUSY particles. The systematic uncertainties on the mass limits of fig. 5 are dominated, therefore, by the uncertainties on the estimate of the QCD background, and of higher order, mass dependent, corrections to the Drell–Yan cross section, as well as by the incomplete knowledge of the P_T resolution and of the transverse momentum distribution of the e^+e^- pairs. The shaded area in fig. 5, obtained by varying the above parameters, shows the effect of these systematic errors on our limits.

Recent results from e^+e^- experiments are also included [20]. A recent analysis of lepton pairs with missing transverse momentum by the L3 Collaboration [21] excludes selectron masses below 41 GeV/c^2 and wino masses below 44 GeV/c^2 at 95% confidence level, using more pessimistic assumptions on the $\tilde{\nu}$ decay branching ratio. For photinos lighter than 35 GeV/c^2, \tilde{e} masses up to 43.5 GeV/c^2 and \tilde{W} masses up to 45.5 GeV/c^2 are excluded at 95% confidence level by the ALEPH experiment [22].
7. Conclusions

The present study excludes at the 90% confidence level the existence of scalar electrons with masses up to 40 GeV/c² in the case of a light photino. Similarly, within the assumptions discussed in section 5, winos lighter than 45 GeV/c² are also excluded at 90% CL, in the case of a light scalar neutrino.

Acknowledgement

We gratefully acknowledge P. Darriulat for his contributions and guidance during the design and construction of the UA2 upgrade project.

The technical staff of the institutes collaborating in UA2 have contributed substantially to the construction and operation of the experiment. We deeply thank them for their continuous support. The experiment would not have been possible without the very successful operation of the improved CERN pp collider whose staff and coordinators we sincerely thank for their collective effort.

Financial support from the Schweizerischen Nationalfonds zur Förderung der Wissenschaftlichen Forschung to the Bern group, from the UK Science and Engineering Research Council to the Cambridge group, from the Bundesministerium für Forschung und Technologie to the Heidelberg group, from the Institut National de Physique Nucléaire et de Physique des Particules to the Orsay group, from the Istituto Nazionale di Fisica Nucleare to the Milano, Pavia, Perugia and Pisa groups and from the Institut de Recherche Fondamentale (CEA) to the Saclay group are acknowledged.

References

[7] F. Alberio et al., The electron, jet, and missing transverse energy calorimetry of the upgraded UA2 experiment at the CERN pp collider, in preparation.